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Thesis motivation and outline

Motivation

As of 2008, more people in the Netherlands died of cancer than of cardio-
vascular disease (CBS statline, 2011). The hope is that cancer can be
contained and may become a chronic disease, but this aim can certainly
not be achieved without a tremendous amount of research and financial
investments. One of the major difficulties in fighting cancer lies in the fact
that cancer is extremely heterogeneous and can alter during the disease.
Furthermore, certain cancer cells can enter the blood stream, travel through
the body and create distant metastases. If the cancer cells have spread,
treatment options are limited and patient prognosis is very unfavorable.
The cells that give rise to metastases have to travel through the blood and
are termed circulating tumor cells (CTC). These CTC are the subject of
this thesis.

Assessing the presence of CTC in the blood of cancer patients may
improve the staging of the patient’s cancer and indicate whether or not the
cancer is actively spreading throughout the body. In addition, character-
ization of CTC offers the opportunity of a "real time liquid biopsy" that
can help to select the most appropriate therapy. Monitoring the number
of CTC after administration of treatment may indicate whether or not the
therapy is effective. Current techniques to characterize CTC rely on (i)
isolation of CTC from the bloodstream by making use of differences in
phenotypical and or physical characteristics between CTC and blood cells,
and (ii) labeling them with for instance fluorescent markers to distinguish
them from blood cells and other contaminants. In this last step, human
interpretation of recorded images is used to identify the CTC. This review
by trained experts is laborious, time consuming, and introduces intra- en
inter-reviewer variations. Furthermore, the assessment of the reviewers is a
qualitative one, as reviewers cannot extract numerical data from the images
easily. They have to rely on comparison with CTC they have seen before
during the training. The definition of CTC that is currently used by review-
ers, is prognostic for patient survival, it is however currently unknown if
this definition is optimal. Characterization of CTC by computer algorithms
may tackle these issues and the development of such algorithms is explored
in this thesis.

ix
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Outline

The outline of this thesis is as follows: chapter 1 is an introduction to
cancer, CTC, and research that is currently performed to isolate and charac-
terize CTC. It states in more detail which challenges are faced in this thesis.
Chapter 2 shows simulations and measurements on equipment for record-
ing images of CTC. It shows a method to compare different microscopic
setups in a quantitative way, which improves comparison of samples that
were recorded by these setups. Chapter 3 shows how computer algorithms
may help in the enumeration of chromosomes in CTC that have been labeled
by Fluorescence In-Situ Hybridization, a technique that is commonly used
for CTC characterization.

Chapters 4 and 5 show details of the creation of new definitions for
CTC from prostate cancer patients by a computer algorithm, which was
trained by using survival data of these patients. The optimal CTC definition
was validated on an independent data set from a different group of prostate
cancer patients. We compared the results of this algorithm with results
from the current CellSearch CTC method, which is cleared by the Food and
Drug administration of the U.S. for monitoring the disease of metastatic
breast, colorectal and prostate cancer patients. In chapter 6 we explored
if this new definition is also valid for indentifying CTC in samples from
breast and colon cancer patients. We use our newly discovered definition
to measure more parameters of CTC and investigate if these parameters
correlate with patient survival.

Training of the algorithm described in chapters 4 and 5 showed a
wide range of CTC definitions that correlated well with survival. Using
definitions that included small tumor particles resulted in the counting of
much more objects as compared to the CellSearch definition. In chapter 7
we investigated what definitions are best suited for measuring a relevant
change in CTC number after administration of therapy. Finally, we show
in chapter 8 that our computerized algorithm is able to characterize the
expression of the biomarker Her-2 on CTC in a quantitative way. This type
of biomarker is relevant for the choice of treatment, paving the way for
personalized treatment.
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CHAPTER 1
Introduction1

Sjoerd T. Ligthart

1.1 Cancer is currently the deadliest disease in the
western world

As of 2008, more people in the Netherlands died of cancer than of cardio-
vascular disease [1]. There are a number of causes why cancer is such
a difficult disease to detect, fight, and ultimately control. For a healthy
individual, there are several risk factors that have been proven to cause
cancer such as genetic factors, tobacco use, infection, radiation, lack of
physical activity, poor diet, obesity, and environmental pollutants. As
human beings are constantly confronted with these risk factors, it is very
difficult to establish when and where in the body a tumor may arise. When
cells are affected by one or more of these risk factors, their genes may
be altered and become oncogenes, causing behavior that is not seen in
healthy cells: they may divide and grow uncontrollably, programmed cell-
death (apoptosis) may be deregulated, cells may induce blood-vessel growth
(angiogenesis) and may invade these blood vessels or the lymphatic system.
When they have entered the blood, these cells are termed circulating tumor
cells (CTC).

The existence of CTC was already recognized in the 19th century [2].
The majority of CTC will be destroyed by the reticuloendothelial system,
but some do survive and may cause distant metastasis, as was already

1Part of this chapter will be published in “Identification of Circulating Tumor Cells”
by Coumans F.A.W., Ligthart S.T., and Terstappen L.W.M.M., Biofunctional Surface
Engineering in Medicine "Nanobiotechnology" series by Pan Stanford Publishing, editor:
Martin Schol.

1
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Figure 1.1 : A schematic representation of possible routes CTC may follow in the
body (drawing by Leon Terstappen).

described by Stephen Paget in 1889 [3]. He proposed that CTC may have a
bigger affinity with certain organs: the "seed and soil" hypothesis. About
100 years later, it was proposed that CTC may have the biggest affinity
with the primary tumor from which the CTC originated and thus settle
near the primary tumor [4]. Nevertheless, these CTC pose a big threat to a
patient as is illustrated in figure 1.1.

When CTC invade the bloodstream, they could either get stuck in a
blood vessel or find a place where they can exit the blood stream. Blockage
could lead to destruction of the CTC by macrophages or to division of CTC
to form a (micro) metastasis. Extravasation of CTC could lead to metastasis
or cell dormancy. Dormant cells may be inactive up to a few years and can
suddenly be re-activated to cause a recurrence of the disease at a -for cancer
researchers still- random moment. When distant metastases are formed, it
is exponentially more difficult to treat the de-localized disease.
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1.2 Diagnosing and treating cancer

Carcinomas are usually detected by physical examination or medical imaging
modalities such as a X-ray CT, PET, or MRI scans. Definite diagnosis
requires a trained pathologist who must judge if a small piece of tissue -a
biopsy- is malignant or not, i.e. if the tumor is spreading and invading
nearby tissue. In case of a malignancy, the most important question is
whether or not the tumor has spread beyond the primary tumor. Imaging
modalities, a genetic profile of the tumor cells and serum tumor markers
are utilized to verify if spreading has occured and to set up a treatment
plan. The first choice is usually surgical removal of the tumor and in some
cases the choice is made to administer neo-adjuvant therapy in an attempt
to reduce tumor size and to enhance the chance that it can be removed
completely. Neo-adjuvant therapy may consist of chemotherapy (inhibits
division of cells globally), radiation therapy (damages DNA of cells locally),
immunotherapy (stimulates the immune system to destroy the tumor),
or targeted therapy (deregulates processes in the tumor cells specifically).
After surgery the risk profile for recurrence of the disease is made by T
(tumor size), N (lymphnode involvement), and M (metastasis) staging [5].

Based on the risk profile it is decided whether or not the patient will
receive adjuvant therapy; the type of therapy depends on the characteristics
of the tumor. Frequently such treatments consist of chemotherapy, but
expression of specific receptors on the tumor offers the potential for targeted
therapy, which in general is less toxic. For example Trastuzumab -an
antibody that recognizes human epidermal growth factor receptor 2 (Her-
2)- can be administered when the tumor cells express Her-2 [6]. Likewise
expression of the estrogen receptor (ER) and progesterone receptor (PR) in
breast cancer tumors permits the administration of therapies targeting these
receptors. The risk profile determined by classical means needs significant
improvements, as a proportion of patients with a low risk profile that did not
receive adjuvant therapy currently still develops a recurrence; a significant
proportion of patients that do receive adjuvant therapy would not have
needed the therapy. Genetic profiling of the tumor [7, 8], detection of
presence of micrometastases [9] or detection of CTC [10, 11] can improve
the accuracy of the risk profile.

In those cases in which metastatic disease has been established, treatment
is not curative for most cancer types and treatments are intended to prolong
survival while maintaining a reasonable quality of life. Monitoring of the
treatment is performed by imaging modalities in those cases that the disease
is "measurable", other approaches are the use of tumor markers and clinical
signs and symptoms. These methods are not sufficiently sensitive and
specific, or cannot be performed in a timely fashion for the determination
of treatment effects. Tumor markers are restricted for those tumors that
produce proteins such as PSA for the majority of prostate cancer patients
and MUC-1 for a subset of breast cancer patients. Other causes can however



ThesisSjoerd_v1 April 16, 2012 23:05 Page 4 �
�	

�
�	 �
�	

�
�	

4

1.3.
F
R

E
Q

U
E
N

C
Y

A
N

D
C

L
IN

IC
A

L
R

E
L
E
V
A

N
C

E
O

F
C

T
C

IN
M

E
T
A

S
T
A
T

IC
C

A
N

C
E
R

also give rise to an increase in these tumor markers [12]. Image scans are
usually performed before initiation and 3–6 months after initiation of therapy.
However, one can only follow some of the lesions in time and frequently the
majority of the disease is not measurable. In addition, there exists high
variability in interpretation of scan images [13], scans may impose a treat
to the health of the patient [14] and the costs of scans are substantial [15].
Measurement of the number of CTC could help improve the management
of the therapy of patients with metastatic disease as it reflects the activity
of the disease in the whole body. In addition CTC may serve as a liquid
biopsy to determine the presence of treatment targets and guide towards
the most optimal therapy for the individual patient.

1.3 Frequency and clinical relevance of CTC in
metastatic cancer

CTC are very rare events in the blood of cancer patients and were usually
only observed in blood smears of patients with extensive metastatic disease
[16, 17, 18, 19, 20]. The CellSearch R© system identifies CTC in 7.5 ml
of blood and has been extensively validated for patients with metastatic
carcinoma [21]. Modeling of the CTC distribution in 7.5 ml of blood from
patients with metastatic breast, colorectal, and prostate cancer was used to
arrive at the CTC frequency distribution in all 5 liters of blood [22]. Figure
1.2 depicts the cumulative probability in which CTC can be detected as
a function of blood volume in patients with metastatic carcinomas. The
figure also shows the frequency of erythrocytes, platelets and leukocytes in
blood and highlights the difficulty of detecting CTC in all patients. Ten
CTC per ml of blood can only be detected in ∼ 20% of patients, 1 CTC per
ml of blood in ∼40% of patients and 100 CTC per liter of blood in ∼80%
of patients.

The CellSearch system only detects CTC that express both the epithelial
cell adhesion molecule (EpCAM) [23, 24, 25] and cytokeratins 8, 18 or 19
[26]. Their frequency may therefore be underestimated using the CellSearch
system. Whether or not CTC with alternative phenotypes have a similar
relation with clinical outcome remains to be determined. A variety of
different technologies are currently being explored to identify CTC by other
means and should further improve our understanding of CTC [27, 28, 29,
30, 31, 32, 33, 34]. Furthermore, the CellSearch system may also miss some
EpCAM+,CK 8, 18 or 19+ cells. Enumeration of EpCAM+ CTC in 100 µl
of whole blood by flow-cytometry showed that the CTC yield can only be
increased by ∼6.5 fold [22, 24]. However, the CTC definition used in the
flow-cytometric analysis is less strict, as is does not include CKs, which is
the most likely explanation for the largest portion of this discrepancy.
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Figure 1.2 : Frequency of ery-
throcytes, platelets, leukocytes and
circulating tumor cells in blood of
metastatic carcinoma patients

The definition of a CTC in the
CellSearch system was set in a series of
preclinical studies and was tested in sys-
tem validation studies [21, 35], as well as in
prospective multicenter studies for breast,
colon, and prostate cancer [36, 37, 38, 39].
These studies showed that metastatic pa-
tients that had equal or more CTC than
a certain cut-off (five CTC for breast and
prostate cancer, three for colon cancer) had
significant lower probability of overall sur-
vival and thus a worse prognosis than the
group that was below this cut-off. Re-
analysis of prostate cancer data further-
more showed that there exists a continuous
relationship between the number of CTC
and survival [22, 40], and that fragments of
tumor cells termed tumor micro particles
(TMPs) -CK positive, CD45 negative ob-
jects that are <4 µm- are present at a much
higher frequency and that their presence
also indicates a worse prognosis [41].

Next to these three major types of car-
cinomas, CTC were enumerated in patients
suffering from lung cancer [42, 43], neu-
roendocrine tumors [44], gastric cancer [45],
bladder cancer [46], and ovarian cancer [47].
Specific targets on CTC were investigated
to provide tailored treatment in the future:
Urokinase receptor (uPAR) and Her-2 anal-
ysis [48, 49, 50, 51], IGF-1 receptor [52],
and numerous genes using multiplex PCR [53, 54, 55, 56]. Currently, clini-
cal trials are underway to investigate if CTC can be used to guide therapy
(see for example ClinicalTrials.gov identifier: NCT00382018).

The relation between CTC and survival is illustrated in figure 1.3 by
Kaplan-Meier plots of the probability of overall survival for 296 metastatic
breast and prostate cancer patients. For this analysis CTC were identified
by an automated algorithm developed as part of this thesis in the images
stored by the CellSearch system. Panel A shows the Kaplan-Meier of
patients before initiation of therapy. Patients with 0 CTC (N=96, 32%)
had a median survival of 33.1 months, patients with 1–3 CTC (N=61, 21%)
had a median survival of 21.9 months, patients with 4–19 CTC (N=71,
24%) had a median survival of 15.8 months and patients with ≥20 CTC
(N=68, 23%) had a median survival of only 9.5 months. Panel B shows
the Kaplan-Meier plot of patients at first follow-up after the initiation of
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therapy. The number of patients with 0 CTC increased (N=134, 45%)
and had a median survival of 23.5 months, patients with 1–3 CTC also
increased (N=73, 25%) with a median survival of 21.3 months, patients
with 4–19 CTC decreased (N=43, 15%) with a median survival of 10.6
months and patients with ≥20 CTC also decreased (N=46, 16%) with an
even shorter median survival 5.5 months. Panel C shows the Kaplan-Meier
of alterations of CTC counts in patients upon treatment. CTC remained
above 20 in 58 of the 68 patients with a median survival of 5.7 months (red
line) indicating that therapy did not result in a beneficial effect. Survival
did also not improve for those patients with lower CTC or rising number
of CTC during therapy with a median survival of 10.6 months, (orange)
and of 15.2 months (purple). The group of patients with 0 CTC (green)
before and after initiation of therapy increased from 96 to 108 and had a
median survival of 29.6 months. Survival of the 65 patients with a CTC
reduction (blue) to below 4 clearly improved and patients that remained
with low counts (light blue) did not significantly alter.

The low numbers of CTC detected urges the need for elimination of
the error in the assignment of CTC as is achieved by the automation of
the image analysis algorithm as described in this thesis. A guideline for
the interpretation of changes in CTC counts is provided in chapter 7 of
this thesis. Patients in these studies in whom 0 CTC were detected in 7.5
ml of blood had metastatic disease and the question arises whether this is
a distinct group of patients, if CTC are missed by the CellSearch system
or if the volume of blood examined is simply too low. Extrapolation of
the sample volume to 5 liters of blood predicted that 99% of patients had
at least 1 CTC before initiation of therapy, which decreased to 97% after
the first cycles of therapy. Survival chances of patients with EpCAM+
cytokeratin+ nucleated CTC are reduced by 6.6 months for each tenfold
CTC increase [22]. These results suggest that a technological leap is needed
to identify CTC in all patients with metastatic disease and those patients
with primary disease that are at risk for disease recurrence.

1.4 CTC enrichment and staining with the CellTracks
Autoprep R©

The CellTracks Autoprep is an automated sample preparation device that
is part of the CellSearch System. Blood is collected from a patient by
venipuncture or from a venous port into a CellSave Preservative Tube R©.
These tubes contain EDTA as anticoagulant and a cellular preservative
to avoid degradation of the blood sample up to 96 hours while it is being
transported to a facility where an Autoprep system is present. In a first
step the blood is diluted, mixed by inversion, and centrifuged after which
it is transferred to the Autoprep station. The plasma separated from the
cells by the centrifugation step is aspirated and discarded. Next, ferrofluid
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Figure 1.4 : Analysis cartridge to which the enriched sample is transferred and magnest
in which cells are magnetically pulled towards the cover slip.

conjugated to EpCAM is added as well as dilution and system buffers [57].
The sample is placed between magnets which causes the cells which are
labeled with ferrofluid to travel to the area within the tube that has the
highest magnetic gradient. After the magnetically labeled cells and the free
fluid are captured at the wall of the tube, the remaining blood is aspirated
and discarded. Buffers are added and the magnetic separation is repeated.
Next, fluorescent markers for DNA (4’,6-diamidino-2-phenylindole: DAPI),
cytokeratins 8, 18, and 19 (conjugated to phycoerythrin: PE), and CD45
(conjugated to allophycocyanin: APC) are added and the sample is left
to incubate. After another magnetic separation step and more aspiration
steps, the remaining 300 µl is transferred to the analysis cartridge, which
is placed in a presentation device termed CellTracks Magnest R© (see figure
1.4).

This magnest consists of two magnets that create an upward magnetic
force, pulling the ferrofluid labeled cells to a cover slip within the cartridge.
A simulated image of the magnetic force lines produced by the magnets
in the magnest is shown in figure 1.5 [58]. Finally, cells are left to rise
to the analysis surface of the cartridge. As can be seen in the figure, the
magnets are designed in such a way that cells will move straight up; their
distribution across the analysis surface is therefore homogeneous.

1.5 Enumeration of CTC with the Celltracks Analyzer
II R©

After the cells are settled, the magnest is placed in the CellTracks Analyzer
II, a semi-automatic epi-fluorescence microscope. Employing a mercury
arc lamp and a 10×/0.45NA objective, the whole cartridge is scanned
by the Celltracks Analyzer II in four fluorescence channels: channels for
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from [58]). Cells are pulled straight up towards the cover slip inside the cartridge. The
force lines in the lower right part of the figure were erased for viewing purposes.

Figure 1.6 : CellSearch thumbnail gallery. The CellSearch software presents all objects
that are both positive for CK and DAPI to an operator for review.
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the aforementioned fluorochromes DNA-DAPI, CK-PE, and CD45-APC,
and a fourth channel termed "FITC". This fourth channel may be used
for control cells or an extra biomarker, but is generally used to verify if
objects are auto-fluorescent (and thus debris). Images are captured using a
charge-coupled device (CCD) camera employing pixels of 6.7 µm by 6.7 µm.
When a scan is complete, the CellSearch software searches for objects that
are positively stained for DNA and CK, and creates a thumbnail gallery
showing these objects. Figure 1.6 shows an example of such a gallery, in
which next to the four fluorescence channels also an overlay of the DAPI
and PE channels is shown.

A trained reviewer must now distinguish CTC from debris and leukocytes
that were carried over during the enrichment procedure. He or she has a
set of rules in determining if an object is a CTC or not, which are shown
using a decision tree in figure 1.7. These rules were set and tested by
means of preclinical studies [59, 60, 61, 62, 63, 64]. By scoring the cells
according to this set of rules, object A from figure 1.6 is a CTC next to
a leukocyte. Object B are two bright CTC close together that have some
spill-over signal in the CD45-APC channel. Object C fails rule 2 (and also
has questionable morphology), and object D fails rule 6. Although these
examples are relatively straightforward, not all images are, as is exemplified
by the two objects in E and F. These seem to be small cells and are a
bit speckled suggesting that they are undergoing apoptosis [65]. When
shown to reviewers, it was found that these objects give rise to the highest
inter-reviewer variability. Is was measured that there exists variability of
4% to 31% for classifying CTC between reviewers (median 14%), and a
7.5% variability between laboratories [66]. The rules for classifying objects
are mostly qualitative, because a reviewer cannot easily verify the number
of grey levels in the image. Reviewers may therefore be biased by the
auto-scaling of these images, which is done purely for viewing purposes. If a
bright object is located near a dim object, this dim object may be classified
wrongly due to this effect.

1.6 Expression of treatment targets on CTC

Before initiation of a therapy one would like to know whether or not a
specific therapy or combination of therapies is going to be effective. The
number of treatment options that target specific sites on or in the tumor
cells is rapidly increasing. Usually the expression of targets for a therapy
is assessed on the primary tumor, because in patients with metastatic
disease the tumor cells may have altered and no longer be representative
for the tumor. Tumor biopsies are cumbersome for the patient and are not
always available. The ability to determine treatment targets on CTC could
solve this problem. Fluorescently labeled antibodies that identify treatment
targets can be used in the CellSearch system to identify these targets. An
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Figure 1.7 : Decision tree showing how the trained reviewers classify whether or not
an object is a CTC.

example is shown in figure 1.8. Seven cells were detected in the blood
sample of this breast cancer patient of which 4 (57%) expressed the Her-2
receptor. These results suggest that treatments targeting Her-2 would only
be effective on a portion of the tumor cells. Tumor cells within a tumor are
heterogeneous, which holds also true for CTC. To relate the expression of
treatment targets on CTC with response to therapy, a quantitative, accurate
and reproducible assessment of the expression is needed. This is not feasible
by manual review of the images illustrated in Figure 1.8. However, it can
be achieved by using a computer algorithm as described in chapter 8 of this
thesis.
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Figure 1.8 : Screen shot of the CellTracks Analyzer II showing an image gallery of 7
CTC of a metastatic breast cancer patient. Her-2 labeled with FITC was used in the
CellTracks Autoprep in addition to DAPI, CK-PE and CD45-APC. The last column
shows the Her 2 expression. The top 4 CTC in the gallery are marked as positive.

Figure 1.9 : Image gallery of CTC after scanning at 10× (left four columns), and after
subsequent imaging of chromosomes 1, 7, 8, 17, and DAPI at 40×. Every row depicts
one object, of which an overlay of all channels is created in the first and last column.
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1.7 Next generation imaging systems

1.7.1 celltracks fishTM

Using the current CellSearch system, is it possible to isolate and enumerate
CTC, but at a relatively low resolution: using the 10×/0.45 NA objective, a
scan of the total surface area can be performed resulting in 144-180 images
of four fluorescence channels. The resolution of the objective is according
to Abbe’s law λ

2NA , and thus 556 nm using light with a wavelength of 500
nm. However, the sampling density of the system using 6.7 µm pixels and a
10X objective in x and y is 670 nm. Hence, applying the Nyquist-Shannon
sampling criterion, the smallest details that can be resolved in an image
of this system in x and y are ∼1.3 µm, which is high enough for counting
CTC. If targets, such as chromosomes visualized by fluorescent in situ
hybridization (FISH), within cells are to be visualized and characterized, a
higher resolution is needed.

For this purpose, a modified version of the CellTracks Analyzer was
build, employing a 40×/0.63NA objective that increased light collection
and thus improved resolution. This CellTracks FISH system is able to load
10× magnification images from a regular CTC scan, locate cells that were
hybridized with fluorochromes against certain chromosomes and image them
at multiple focal depths at 40× magnification. This configuration allowed
for successful imaging of centromeres on chromosome 1, 7, 8, and 17 and
showed discrepancies in chromosomes copy number between leukocytes and
CTC from prostate cancer patients [67]. Figure 1.9 shows CTC imaged
with this system in a gallery, next to the original images from the 10× scan.
This system was also used to successfully determine ERG, AR, and PTEN
gene status in cells from prostate cancer patients [68].

1.7.2 celltracks tdiTM

To scan a complete analysis cartridge at 40× magnification, a new system
was built that incorporates three lasers, beam homogenizing optics using
micro-lens arrays, a 40×/0.6NA objective mounted in a piezo z-stage, and
a time delay integration (TDI) CCD camera [69, 70]. The setup is depicted
schematically in figure 1.10. The TDI camera allows for continuous image
acquisition, as the electrons in the camera are shifted from row to row
at a speed that matches the speed of the x-y stage in system. It thereby
eliminates the time it takes to transfer from one field to another in regular
start-stop based systems. Next to decreasing the total imaging time, this
system also improves imaging of CD45-APC labeled leukocytes by using a
red laser instead of the Hg-lamp that is installed in the regular CellSearch
system, which has weak excitation power in the red part of spectrum. Next
to the fluorescence channels, bright-field images are recorded which could
further identify the imaged objects.
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Figure 1.10 : Schematic representation of the optical pathway and components of
the CellTracks TDI setup. The three lasers produce a bundle that is homogenized
into a square mean profile using the MLAs and reflected using the triple band dichroic.
The bundle is focused on the sample, which is placed on a x-y translation stage by an
objective mounted in z translation piezo system. Emitted fluorescence passes the triple
band dichroic and is focused on the TDI CCD camera. This camera is triggered by an
encoder signal from the x-y stage to synchronize the time delay integration with sample
movement.

1.8 Challenges for the CellSearch system

1. The definition of what constitutes a CTC was set before clinical stud-
ies were started. This qualitative definition proved to be good enough
for discriminating patients based on CTC counts and correlated very
well with survival, but may not be the optimal definition. A computer
algorithm may find a better, quantitative, definition of objects most
dangerous for patients. Furthermore, it is unknown if there is one
optimal definition for all CTC or that different definitions should be
used to classify objects coming from tumors in the prostate, breast,
or colon.
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2. Trained reviewers have to classify objects, in the case of CellSearch
CTC, CellTracks FISH, and for the measurement of extra markers
such as Her-2. Manual classification causes intra- and inter-reviewer
variability, as well as inter-laboratory variability. Furthermore, it is
time consuming, laborious and costly. This task could be performed
by a computer algorithm with higher reproducibility and provide
quantitative results.

3. Measuring changes in CTC counts over time within patients is difficult
because of the low frequency of CTC and because it is currently
unknown what the best method is to measure an increase or decrease
in the number of CTC. It is furthermore unknown which definition of
a CTC is best suited for measuring significant changes in CTC counts.

The above challenges are addressed in this thesis.
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CHAPTER 2
Simulation and calibration of

spectral imaging methods

Sjoerd T. Ligthart, Cees Otto, Jan Greve, and Leon W.M.M. Terstappen

Abstract

Introduction: Multi- and hyper-spectral fluorescence imaging methods
have been available for decades. It is however unknown how different methods
compare quantitatively, i.e. which method offers the best trade-off between
throughput in photons per second and resolution in nanometer per measured
spectral band. We simulated four spectral imaging methods and calibrated
real life spectral systems for quantitative comparison. Materials and Methods:
Four spectral imaging methods, based on dichroic mirrors, a prism, a liquid
crystal tunable filter (LCTF), and an interferometer were simulated for
measuring centromere-like objects. Combinations of five quantum dots and
DAPI were used in a labeling scheme to cover all 24 different chromosomes.
Linear unmixing and classification of objects was performed on the simulated
images. The total integration time was set such that the classification error
was 5% for every method. Six real life systems were calibrated using a
LED calibration board; LED current was plotted against camera output
for various wavelength ranges. Results: Integration time needed for 5%
classification error of objects was 0.24, 3.6, 7.8, and 11.5 s, for the dichroic
mirror, prism, LCTF, and interferometer methods, respectively. Camera
outputs showed a wide range of sensitivities, even those who employed the
same CCD sensors. For measuring a large range of wavelengths with high
spectral resolution, the interferometer outperformed the LCTF system by
a factor of two. Conclusions: A designated set of dichroic mirrors is to be
preferred for fast measurements of combination of quantum dots. However,
a LCTF system offers great flexibility, while prism and interferometer-based
setups are preferred if very high spectral resolution is required.
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2.1 Introduction

Multi- and hyper-spectral fluorescence imaging have been around for several
decades after the discovery of fluorescent specific probes coupled to antibod-
ies [1]. This discovery was preceded by the introduction of microscopy using
optimized illumination and ultimately the discovery of the fluorescence
phenomenon [2, 3]. Traditionally, fluorescent signals are measured using
an epi-fluorescence setup, i.e. using an microscope objective for focusing
the excitation beam coming from a light source onto the sample as well as
collecting the emitted fluorescence photons for transfer to a charge-coupled
device (CCD), a photo-multiplier tube (PMT), or the eye of the observer
via ocular lenses. Pixels on a CCD-chip convert the incoming photons to
electrons which are converted into digital units to create a digital image of
the sample. As the resolution of the image is partially dependent on the
size of the pixels (termed sampling in the image plane), a CCD chip that
detects one band of color is preferred. Color pixels next to each other would
lower the effective resolution of the camera. Hence, a spectral selection
method has to be employed before the photons reach the CCD chip in order
to distinguish between different fluorochromes.

A method is called multi-spectral if it can deliver a fixed number of
wavelength ranges -termed spectral bands hereafter- to the camera. Current
commercially available microscopes that are employing sets of interference
filters and dichroic mirrors, usually mounted in so-called filter cubes, fit into
this category [4]. Filter cubes are currently available for a wide variety of
fluorescent probes; however, the number of filter cubes that can be installed
in a microscopic system is limited. A spectral selection method is called
hyper-spectral (although this classification is somewhat arbitrary) if it is
able to transmit a large number of selected spectral bands to the camera.
Examples of hyper-spectral imaging methods are Fourier based systems,
dispersive or prism-based systems, and tunable filters by means of liquid
crystals or acousto-optic modulators [5, 6, 7]. Each of these methods has
its qualitative advantages and disadvantages in for instance ease of use,
compatibility with fluorescent probes, and cost.

All these methods have been commercially available. However, it is
currently unknown how these methods compare quantitatively in terms of
transmission of photons per second versus spectral resolution in nanometer
per bandwidth. Qualitatively, dedicated methods that are tuned, i.e. have
high transmittance on specific wavelengths, generally can perform the task
faster than methods that are very flexible and thus versatile. In this article,
we present results from simulations of various spectral imaging methods in
order to conclude which method provides the highest throughput and thus
results in the fastest classification of simulated objects with low error using
a commonly used set of fluorescent probes. We performed this simulation
in order to optmize measurements on fluorescent in situ hybridized probes
on centromeres of chromosomes, which are small and usually round signals
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of ∼1 µm2. If all centromeres in a cell are to be measured in a fast and
sensitive way, spectral overlap should be minimal, because the signals will
be closely spaced in the nucleus. Finally, we provide measurements using a
calibration source, to verify the simulations and to provide a quantitative
comparison between these spectral imaging methods.

2.2 Materials and methods

2.2.1 introduction

Four methods were simulated in Matlab 2009a (Mathworks, Natick, MA): i)
an interferometer or Fourier spectral imager; ii) a dispersion or prism-based
spectral imager; iii) a band selecting or liquid crystal tunable filter (LCTF)
imaging system; iv) a dichroic mirror (DM) spectral imager. Each method
will be explained in short below. However, before starting simulating it
is important to provide a figure of merit: what do we want to measure
to test the spectral imaging methods and why. Next, we recognize which
fluorochrome combination is to be measured. Fluorescence emission theory
and the spectral imaging methods are explained, and how these methods
were optimized. Finally, it is shown how we set up a measure for the
best spectral method and how the simulation was validated using actual
microscopes.

2.2.2 testing the spectral imaging methods: the challenge

First, it is important to recognize how the methods are going to be compared.
Spectral imaging methods may be rated in terms of transmission of photons
per second, number of detectable colors, or spectral resolution: bandwidth
per detector element. We chose a practical approach: ultimately, each
method is to be used for measuring fluorescent objects and usually cells. To
extend our DNA research in circulating tumor cells [8], we need to measure
interphase fluorescence in situ hybridization (FISH) probes -termed dots
from here on- on centromeres with low classification error. Therefore we
stated the challenge for the spectral imaging methods as follows: which
method can measure 24 different combinations of fluorochromes on FISH
dots in the fastest way with low classification error. This challenge involves
a trade-off between high throughput of photons, spectral resolution, and
spectral overlap within detector elements.

2.2.3 fluorochrome combinations

In our view, a fluorochrome combination consisting of a nuclear dye and
five FISH dot dyes should be sufficient for the task of measuring 24 different
centromeres: the nuclear dye is used for locating the total area of the nucleus
of the cell and the five dot dyes give us a total of 25 - 1 = 31 combinations.
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24 combinations are necessary to measure all centromeres of 22 pairs of
autosomes and one pair of sex chromosomes. If all are to be measured at
once, the emission spectra should be separated enough spectrally to be
classified with low error, i.e. crosstalk or spectral overlap of signal from one
fluorochrome in the detection channel of another should be minimal. Ideally,
we would like to excite all these fluorochromes at the same wavelength. Only
one laser would be required and all emission photons could be collected in
parallel instead of in series of measurements.

In literature, different examples can be found using 6 or more com-
binations of fluorochromes for measuring either metaphase or interphase
chromosomes [9, 10, 11]. However, all these combinations require multiple
excitation sources and thus have to be measured either in a series of record-
ing sessions or with very strictly defined band pass excitation optics. We
chose a system consisting of the nuclear dye 4’,6-diamidino-2-phenylindole
(DAPI) and five quantum dots (Qdots), with in parentheses their full width
half maximum: 525 (34) nm, 565 (31) nm, 605 (22) nm, 655 (29) nm,
and 705 (66) nm. The emission peaks of the Qdots are almost equally
spaced over the 500–750 nm range, DAPI emission peaks at 465 nm. All
the fluorochromes can be excited in the blue region with for instance a
375 or 405 nm blue laser, molar absorption coefficients at 375 nm ranges
from 540,000 M−1cm−1 for Qdot 525 to 10,500,000 M−1cm−1 for Qdot 705.
Furthermore, Qdots are known to be less affected by bleaching and have
a high photostability [12, 13, 14, 15, 16]. It is known that Qdots have a
property termed blinking, i.e. they switch between dark and bright states
[17]. Blinking of single quantum dots can be on a timescale in the order of
seconds, and can thus have a serious influence on the measured fluorescence
in single-molecule applications. However, in our application, the signal of
many Qdots (∼1000) is averaged, and we therefore assume a negligible
influence on intensity. Table 2.1 shows the combinations necessary to reach
24 combinations of chromosomes: at most three Qdots together with DAPI
per chromosome are required.

2.2.4 fluorescence excitation and emission theory

The aforementioned spectral imaging methods were simulated by means of
the number of photons excited by a our current system which was described
elsewhere [18]. A 8 mW 375 nm laser was used in combination with a
40×/0.6NA air immersion objective to calculate the number of photons
arriving at the CCD camera from the sample as described below [19]. The
fluorescence lifetime of DAPI is very short, however we recognize that the
lifetime of Qdots ranges from 5 ns up to 100 ns. Nevertheless, we assume
that each fluorochrome is excited in a linear and isotropic way, and is not
saturated. The excitation energy absorbed by every fluorescent molecule
is given by a probability defined by the absorption cross section σA [cm2

molecule−1].
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Table 2.1 : Combinations of dyes used in the simulation. Different combinations of five
Qdots were used in combination with the nuclear staining DAPI to create 24 combinations
for labeling of all chromosomes.

combi DAPI Qdota525 Qdot565 Qdot605 Qdot655 Qdot705 # of
probes

1 × × 2
2 × ×
3 × ×
4 × ×
5 × ×
6 × × ×
7 × × ×
8 × × ×
9 × × ×
10 × × × 3
11 × × ×
12 × × ×
13 × × ×
14 × × ×
15 × × ×
16 × × × × 4
17 × × × ×
18 × × × ×
19 × × × ×
20 × × × ×
21 × × × ×
22 × × × ×
23 × × × ×
24 × × × ×

a Quantum dot.

σA = 103ln(10)ελNAvo (2.1)

where ελ represents the molar absorption coefficient [M−1 cm−1] and
NAvo is Avogadro’s number. Every fluorochrome converts the absorbed light
with a quantum efficiency Qem thereby creating an isotropic light source
with spectral density of radiant intensity Iemλ [W sr−1 nm−1 molecule−1]:

Iemλ = EexcλexcσAq(λ)Qem/4π (2.2)

in which Eexc is the irradiance [W cm−2], λexc [nm] is the excitation
wavelength and q(λ) is the spectral relative quantum yield distribution
function according to the normalized emission spectrum g(λ) by

q(λ) =
g(λ)∫
g(λ)λ dλ

(2.3)

Because the source of emission could be viewed as an isotropic point
source, the solid angle of the collection of the objective Ω is given by
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Ω = 2π

1 −

√
1 −

(
NA

n

)2
 (2.4)

in which NA is the numerical aperture of the objective and n the
maximum refractive index in the medium between object and objective.
Capturing the total transmittance of the optical components between sample
and camera in τem, and the sensitivity of the spectral detector in QCCD ,
the total photoelectron flux [photoelectrons s−1 molecule−1] in the CCD
camera per pixel is then calculated by

ϕCCD =
1

4
1016 (EexλexσA)Qem [Ωτem]

∫
q(λ)QCCD(λ) dλ (2.5)

A rather lengthy expression in which the first constant term represents
one over the energy of a photon at wavelength λ [J nm−1]. The last part of
the expression is integrated over the wavelength band as imposed by the
spectral imaging method. We assume that the transmission of the optics
and objective and the quantum yield Qem are independent of the emission
wavelength. Thus, the integral part of this equation is different in each
spectral imaging method. Every method records a spectral cube consisting
of two spatial axes and one spectral axis (x,y,λ), although in different ways:

1. The Fourier method: the emission enters an interferometer which
records an interferogram of the signal at the detector. Hence, informa-
tion of all the wavelengths is recorded at the same time. The optical
path length of the signal at the detector is varied by rotating a Sagnac
interferometer, which consists of two mirrors and a beam splitter.
Afterwards, the frequency signal is Fourier transformed to retrieve
the wavelength information. Example: SpectraCube R© by Applied
Spectral Imaging (Carlsbad, CA).

2. The prism method: this method uses the CCD in a different way: one
axis is used for spatial information, the other axis is used for spectral
information. The emission signal enters a prism and is dispersed on
the CCD. Excitation should be performed by slit illumination; the
sample should be scanned to retrieve the second spatial axis. Example:
P.A.R.I.S.S. R© by Lightform Inc (NJ, U.S.).

3. the LCTF method: the emission light enters a liquid crystal tunable
filter, which is tuned on a central wavelength, usually retrieving
wavelength information ±5 or ±10 nm around this central wavelength.
In a sequence of recordings, the tuned wavelength shifts across the
desired wavelength spectrum. Example: Nuance R© by Caliper Sciences
(Hopkinton, MA).
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Figure 2.1 : Schematic
example of a DM imaging
setup. The white beam,
coming from the objective,
is split in three parts via
dichroic mirrors and im-
aged on the camera using
mirrors. Two trapezoid
prisms are inserted in
the path of the central
beam to create equal
path lengths for all three
beams.

4. the DM method: Two CCD cameras which operate in time delay
integration (TDI, see [18]) mode are illuminated in parallel. The
emission light is split into six parts using dichroic mirrors, of which
an example is given in figure 2.1. Two of the setups in figure 2.1 are
needed if six fluorochromes are to be measured. This method could
be compared to measuring the signal using filter cubes in a series
of measurements, with the difference that the DM method works in
parallel. Example: ImageStream R© by Amnis Corporation (Seattle,
WA).

2.2.5 test image for simulation

Of all these methods the properties of current systems as built by current
industrial companies were looked up and applied as well as possible. A
400×1024 pixel test image consisting of all 25 combinations of fluorochromes
(24 Qdot combinations and DAPI alone) was created. In the test image, the
objects that were created were 29 pixels (∼1×1 µm at 40× magnification)
in size and round in shape, which is typical for small objects such as FISH
probes. In total, 720 objects were created that could conveniently fit in
this space. In order to get maximum performance out of all of the methods,
each method was optimized as described below.

2.2.6 inserting a nd filter for using the dm method

The DM spectral imaging method is quite straightforward in its implemen-
tation based on formula 2.5. Two cameras are used in parallel to image the
field of view in TDI mode; therefore their integration time should match.
Qdots that are imaged on camera two have a substantial higher extinction
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coefficient (factor ∼20) and are therefore much brighter. In order to pre-
vent saturation on camera two, while camera one still records noisy images,
several neutral density (ND) filters were tested in order to decrease signal
intensities at camera two.

2.2.7 optimizing the lctf method

The LCTF method records images at bands that are 20 nm full width half
maximum (FWHM) wide. The number of spectral bands that are recorded
along the total range of the test images can be changed: the images could
be recorded 1 nm apart or, for instance, 20 nm apart. In this way the total
measuring time can be adjusted. By recording the test image at a different
number of images -thus creating a different spectral resolution- the optimal
spectral resolution was determined. A better resolution usually decreases
the classification error, but requires longer recording times. Therefore, the
total imaging time was set to 10 s, while varying the number of spectral
bands. In this first step, the spectral bands were spread evenly over the total
spectral range of 420–720 nm and the classification error was determined for
each number of spectral bands. This classification error was plotted against
the number of spectral bands to visualize a trend. In the next step, different
combinations of spectral bands were tested in a brute force way in the
optimal region to determine the definite optimal number of spectral imaging
windows. As a last optimization step, it was recognized that it would be
advantageous to distribute the integration time in a different manner over
the chosen spectral windows: Qdots which emit at higher wavelengths have
a higher extinction coefficient and are thus brighter. Furthermore, the
transmission of the LCTF is also wavelength dependant. It was therefore
determined which percentage of integration time should go to each spectral
window to measure each channel with an equal signal to noise ratio (SNR).

2.2.8 optimizing the fourier method

The basis of the Fourier method is a Sagnac interferometer which splits
the beam coming from the sample by means of a 50/50 beam splitter. The
beams travels opposite path which are confined by two mirrors. A small
optical path difference (OPD) is imposed by a slight tilt of one of the mirrors
or the beam splitter. Two beams of a monochromatic source will interfere
at the camera by means of the following relation [20]

ICCD(δ) = 4I0cos
2

(
δ

2

)
(2.6)

in which I0 represents the emitted beam from the sample serving as
input and δ is the phase difference imposed by the OPD. Rotating the
interferometer varies this phase difference, and the number of steps and
total angle result in a number of spectral images. The number of steps
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that is required has a lower bound in the Nyquist criterion: the smallest
spectral detail has to be sampled by at least two points to prevent aliasing.
Higher sampling results in more images and a higher spectral resolution, but
decreases the signal to noise ratio if the total integration time of the mea-
surement is kept constant. After imaging, the so-called interferogram should
be Fourier transformed in order to retrieve the original intensities present
at the sample. A fast fourier transform (FFT) function was used, applying
a Hann window for apodization. Using this window, the interferogram is
smoothed by setting a passband in the shape of a bell-shaped function.
Using the test image and a constant total integration time, the step size
was varied to measure the error in classifying the Qdot combinations. In
this way, the optimal step size was determined.

2.2.9 optimizing the prism method

Prism based spectral imaging methods are based on a dispersive element in
the emission path which spreads the spectral information within the signal
from red to blue. Thus, one axis of the CCD camera is used for spectral
information, the other axis is used for one of the spatial axes. In this setup,
a slit scanning illumination profile should be used and the sample should
be scanned to gather information about the second spatial axis. Using
the empirical Sellmeier equation, the dispersion of a particular wavelength
through a prism consisting of a certain type of glass can be derived.

n2(λ) = 1 +
B1λ

2

λ2 − C1
+

B2λ
2

λ2 − C1
+

B3λ
2

λ2 − C1
(2.7)

Were n is the refractive index, and B1 to B3, and C1 to C3 are ex-
perimentally determined glass-specific Sellmeier coefficients. Using this
equation, the wavelength dependent dispersion can be calculated. The devi-
ation angle Θdev that results from the incident angle Θi on the prism after
dispersion is then given by

Θdev = Θi + sin−1
[
sinα

√
n2 − sin2(Θi) − sin(Θi)cos(α)

]
− α (2.8)

in which α is the apex angle of the prism. This dispersed bundle of light
is imaged onto a camera, blue light being more dispersed than red light.
Spectral resolution at the lower wavelengths of the imaged spectrum is thus
higher than that of the higher wavelengths, when using a common prism.
If a 1280×1024 pixel camera is used, the dispersion results in a very high
spectral resolution, which could be higher than needed for our application.
Therefore, binning of CCD pixels in the spectral direction in order to create
"super pixels" may be applied to trade some spectral resolution for SNR.
Binned super pixels resulting from 2, 4, 8, 16, 32, and 64 regular pixels were
created to optimize this trade-off.
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Figure 2.2 : Schematic
representation of the
simulation process. A
test image is simulated
by one of the spectral
imaging methods to form
a spectral cube. Linear
unmixing is applied by
using a spectral library
which was measured dur-
ing the simulation. After
classification of all pixels,
the classification error is
determined by comparison
with the test image.

2.2.10 classification of the test image after linear unmixing

The simulation is illustrated in Figure 2.2. For each method, the 400×1024
test image was converted to a intensity stack by means of the simulation
described above. Next to this intensity image, all fluorochromes were
simulated separately to create a spectral library. Poisson noise was added to
each intensity image, based on the photon count. Readout noise and a noise
component from the laser were also added. The spectral cube that was
recorded using each method was then sized 400×1024×λ, in which λ is given
by the number of spectral bands. Next, the spectral cube was processed
by a regular linear unmixing algorithm, based on a pseudo-inverse of the
measured spectral library, to eliminate spectral crosstalk (see for example
[21]). This unmixing procedure resulted in a 400×1024×6 intensity image,
a stack with an image containing information for each fluorochrome. Next,
the intensities were normalized to 1 in the λ-direction.

For each pixel (a 1×1×6 matrix), the Euclidean distances to predefined
points in six dimensional space were derived, which represented the normal-
ized fluorochrome combinations. The combination that had the minimum
distance to the pixel was chosen. The classified pixels were grouped as
objects, if the number of equally classified pixels in a region was between
20 and 40. In this way, we allowed for ∼33% misclassified pixels per object.
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We set the integration time in every method such that 5% of the 720 objects
were allowed to be misclassified compared to the objects in the test image.
These misclassification thresholds were set at arbitrary levels. However, in
this way we could compare the methods in a transparent way, because a
0% classification error as a result of an experiment does not clearly tells us
if improvement is still possible.

2.2.11 measuring cameras and setups using a calibration board

To validate the simulation, measurements were performed on different spec-
tral imaging systems. To exclude variance in sample quality, an electronic
calibration board (which was kindly provided by the QI group, Delft Univer-
sity of Technology) was used. This board contains six LEDs that could be
tuned at certain intensities very precisely. The input (measured in amperes
through the LED) could therefore be controlled for every spectral imager in
a controlled way. In this way, output (measured here in intensity counts per
millisecond) from different setups can be compared in a quantitative way.
Using a 20×/0.4NA objective in a wide-field fluorescence setup in which
a DAPI filter cube was fitted, images were recorded of the LEDs. This
filter-cube has a 420 nm long-pass emission filter which passes the light of
all LEDs. The LEDs used were emitting at a central wavelength of 460 nm
(blue LED), 520 nm (green LED), and 640 nm (red LED) according to the
specs. The calibration measurements on each of the setups was performed
as follows:

1. One integration time for all measurements of the specific setup was set
after determination of the LED that resulted in the highest intensity
at a current of 300 mA. The integration time was set such that 3/4 of
the maximum of the intensity range was reached. Saturation of the
camera was thus avoided.

2. A black image was measured with the LED switched off at the desig-
nated integration time.

3. For all three LEDs, intensities were measured for different LED cur-
rents between 50 and 300 mA in steps of 50 mA.

4. Images were loaded in Matlab. For each measurement, the central
and brightest part of the LED surface was selected in the image.

5. The mean intensity in this region was determined and normalized to
1 ms integration time after subtracting the black image.

Each selected region contained at least 3·105 pixels. The cameras that
were tested were the Hamamatsu c4742-95NR (Hamamatsu Photonics,
Hamamatsu City, Japan), Meade DSI III (Meade Instruments, Irvine,
CA), Smartek GC 1392M (Smartek d.o.o., Cakovec, Croatia), CRI Nuance
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Table 2.2 : Camera specifications.

Camera Hamamatsu
C4742-95NR

Smartek GC 1392M
CRI Nuance
ASI SpectraCube
Meade DSI III pro

SBIG ST 402ME

Sensor Hamamatsu Sony ICX285 KAF-0402/E/MF
Cooled(C) yes (-20) no / yes (0) /

yes (-20) / no
yes (0)

Number of pixels 1280×1024 1344×1040 756×510
Pixel size (µm) 6.7×6.7 6.5×6.5 9×9
full well depth (e-) 13300 16000 100000
Readout noise
per pixel (e-)

13 8 17

Dark current
per pixel (e-/s)

0.05 0.01 1

QEa at 400 nm (%) 50 50 45
QE at 650 nm (%) 20 41 72

a Quantum efficiency.

(Caliper Life Sciences, Hopkinton, MA), and the Spectracube (Carlsbad,
CA). The latter two cameras employ a LCTF filter and an interferometer for
spectral separation, respectively. Table 2.2 shows details of the CCD chips
and performance as given by the manufacturers. The SpectraCube system
was installed on a Leica DMXRA epi-fluorescence microscope, the other
cameras were all installed on the same Nikon Eclipse E400 epi-fluorescence
microscope. Unfortunately, a similar epi-fluorescence system using a prism
was not available at the time of this study.

2.3 Results

2.3.1 optimizing the spectral imaging methods

Figure 2.3 shows the classification error of the FISH objects as function of
the number of spectral LCTF bands. The bands were evenly spread over
the range from 420–720 nm and the total integration was kept constant at
10 s. From this figure, it was clear that the optimum number of bands was
in the range of 6 to 8 bands; it is thus best to record few bands with high
SNR instead of more bands with lower SNR. The error is large at 7 bands,
which was due to the chosen spread of bands over the wavelength range,
which turned out to be a bad choice for seven bands.

To find the optimum setting within the range of 6–8 bands, it was
therefore necessary to vary the spread of the bands over the total spectral
range, instead of spreading them evenly over the whole range. Therefore,
all combinations of putting the spectral bands 20 nm apart were tested for
the case of 6 to 8 bands, resulting in 3003, 3432 and 3003 combinations
respectively. To ensure every band has an optimal SNR, the total integration
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Figure 2.3 : The classification error as function of the number of spectral LCTF bands.
The bands are spaced equally over the total bandwidth of 420–720 nm. The integration
time for all bands together was set at 10 sec, which results in a lower integration time per
band when more bands are measured. Error is the standard deviation of 10 experiments.

time was divided among the bands unevenly. In this way, bands with weaker
fluorescence signals would contribute the same number of photons as stronger
signals in other bands. The combination of 7 bands that produced the
lowest classification error had center wavelengths at 460, 480, 520, 560, 600,
640, and 700 nm. The integration times used for each band were 24.1, 19.4,
8.9, 3.6, 1.3, 1.6, and 1.1 s, respectively.

The dispersion method records images with high spectral resolution per
pixel, which varies from 0.16 nm at 400 nm to 1.18 nm at 850 nm for a
CCD chip that is 1024 pixels in the spectral dimension and 1280 in the
spatial dimension. The preferred method of binning was 8×1 on the CCD
chip. This method lowers the total imaging time by a factor of 8, while still
preserving enough spectral information to keep the classification error low.

Optimization of the Fourier method was performed by varying the num-
ber of rotation steps by the interferometer. Each step shifts the interference
fringes over the CCD. In our test images, the lowest wavelength present is
400 nm, and the fringes produced by this wavelength should be sampled
on the CCD by at least two points. The optimal sampling step was just
above the Nyquist criterion: further increase of the sampling density did
not contribute to a better classification within the same total integration
time.

The DM method was equipped with a ND filter that would even out the
intensity between the cameras: a ND 4 filter (75% of signal is absorbed at
the camera recording the brightest Qdots) turned out to be necessary.
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Table 2.3 : Results of simulation of spectral imaging methods. Total
integration time needed for every method to arrive at the same classification
error of 5% when classifying the test image containing 720 objects.

Spectral method Integration time (s)

LCTFa (using 7 bands) 7.80
Prism (using 8×1 binning) 3.60
Interferometer (sampling just above Nyquist) 11.52
DMb method using 2 cameras (NDc 4 filter) 0.24

a Liquid crystal tunable filter, b dichroic mirror, c neutral density

2.3.2 total integration time for simulation of the test image

Next, we compared the optimal configuration for every spectral imaging
method for processing time by allowing a classification error of 5% using the
400×1024 pixel test image containing 720 objects. Results of the comparison
are shown Table 2.3. Integration times were corrected for a field of view of
1280×1024 pixels: the integration time found using the DM method was
multiplied by three, because this method only accepts field of views that
are 400×1024 pixels in size.

2.3.3 measuring throughput in microscopes

All cameras were exposed to photons emitted from the same LEDs. Inte-
gration times were set such that the cameras were not saturated, and the
3/4 of the intensity range could be covered when the LEDs were set to 300
mA. However, the integration time of the SBIG camera could not be set
low enough to avoid saturation, therefore the currents of the LEDs were
varied from 30 to 55 mA in steps of 5 mA. Extra amplification of the signal
by means of a gain were turned off where possible. Figure 2.4, panel A, B,
and C show the results of the single shot cameras. The normalized intensity
per ms is plotted against the current through the LEDs, on a log-scale.
All cameras, but the MEADE camera showed linear behaviour in this re-
gion. The SpectraCube camera could not be included in this comparison,
as there exists no single shot option on this system: for an interferometric
measurement to be successful, a range of optical path differences has to be
measured.

Next, measurements of a spectral range from 420–720 nm were performed
using the CRI Nuance and the SpectraCube. Currents through the three
LEDs were again varied from 50 to 300 mA in steps of 50 mA, results
are shown in figure 2.4, panel D, E, and F. The measurements included
31 steps at 5 ms for the Nuance camera, and 128 steps at 2 ms for the
SpectraCube camera. Total acquisition time for a measurement was 16
s for the Nuance camera, 17 s for the SpectraCube (which included the
Fourier transformation). The intensity values per image were normalized on
the total integration time that was used for the whole measurement. This
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Figure 2.4 : Panel A, B, C: Intensity counts for a series of cameras mounted on a
Nikon Eclipse E400 microscope as function of the current through a 460, 520, and 640
nm LED. Panel D, E, F: Intensity versus wavelength for the Nuance and SpectraCube
methods at a current of 300 mA through LEDs of 460, 520, and 640 nm.
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was necessary, as the measurements from the SpectraCube resulted in 41
images (not 128) after Fourier transformation. A per image comparison
would therefore not yield a fair result. To measure if there existed a time
dependant factor in the LED intensity, the first intensity measurement from
the red LED was repeated after all other measurements were done, the
variability between those two measurements was 0.25 counts, measured over
3.2·106 pixels.

2.4 Discussion

Fluorescence spectral imaging has been around for several decades. Still,
reported measurements and images are usually measured using a different
systems, and are therefore difficult to compare. Calibration tools are
necessary to avoid false claims of increased sensitivity and to compare
systems in a quantitative way. In this article, spectral imaging systems were
characterized by simulation and the results were compared to measurements
on real setups for a potential powerful application: the application of several
quantum dots in one assay in order to view a high number of different FISH
probes. Quantum dots have narrow emission spectra (i.e. spectral overlap
is low), and can be excited at the same wavelength, for instance using 375
or 405 nm lasers. However, we noticed in early experiments that the actual
usage of quantum dots on cells proved to be difficult: large variations in
staining efficiency were seen. Therefore we compared the spectral imaging
methods using a LED calibration board. The emission power of LEDs can
be tuned accurately by varying the current through the LEDs, thereby
creating the ideal source for calibration of the emission path of a microscope
system.

Simulation results in table 2.3 show that the DM spectral imaging
method is about one order of magnitude more sensitive than the other three
methods. This dedicated, tailored method for measuring a collection of
quantum dots has the highest transmission. By using two parallel CCD
cameras, photons from the whole spectral range can reach the cameras at
the same time. This high measuring speed comes at a price: the system is
very inflexible for other combinations of fluorescent probes. Looking at the
other three systems, the prism method has the best throughput, although
a slit-scan system has to be employed to use this system. Measuring a
whole field of view therefore always requires a translational stage that
moves, or scanning mirrors, and therefore may cause some motion artifacts.
The LCTF system is very flexible: before a scan is performed all spectral
windows can be determined exactly, thereby minimizing the recording of
redundant wavelengths. A lot of photons are thrown away by selecting the
LCTF window, therefore the speed of measuring is a factor two lower than
the dispersion method.

The Fourier method performed a little worse than the LCTF method.
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This method is suited for usage in combination with a large range of
fluorochromes in one sample. No single shot option is available, because
for accurate measuring of the optical path difference, a minimum number
of images is always required to reach the Nyquist criterion for sampling.
When looking at the simulated images, the Fourier system had difficulty
with classifying the DAPI signal. It performs well on small emission peaks
compared to other methods, because photons are measured from those peaks
during the whole scan. A more broader wavelength spectrum, like DAPI,
seems to suffer more from noise/background signal after classification of the
pixels. Of note, we used a linear unmixing algorithm to classify pixels in this
simulation. This approach might be slightly unfavorable for methods which
record at high spectral resolution. More sophisticated methods of unmixing,
such as support vector machines or neural networks, may be applied if there
is more spectral information available. An algorithm could then be trained
on a setup with possibly an improved accuracy in classification of pixels.

When we measured different cameras and spectral imaging methods
using the LED calibration tool, large differences were seen (see figure 2.4),
even between cameras employing the same CCD chip. Some cameras apply
a standard gain that cannot be turned off, as is revealed by the difference
in slope of the graphs. For instance, the MEADE camera applies a high
gain that delivers high signals per ms, at the cost of dynamic range. The
Hamamatsu camera performed the best: it has a high dynamic range,
while returning high intensities per ms. Two setups were tested on a wide
spectral range as can be seen in figure 2.4, panel D, E, and F: the LCTF
Nuance system and the SpectraCube Fourier system. Measurements on
both systems took ∼17 s. The results suggest that the Fourier system is
to be preferred if a large spectral range is to be measured at high spectral
resolution: it delivers a higher signal by a factor of two.

However, if only three different signals are to be measured, the LCTF
can be set such to only measure at the designated wavelengths. The LCTF
values of figure 2.4A can for example be compared with the values of figure
2.4D. In our simulation it was derived that the optimal number of spectral
windows for the LCTF was one more than the number of fluorochromes.
If, as in the simulation, 6 different signals should have been measured, 7
LCTF bands are needed. This will increase the throughput of the LCTF by
a factor of ∼4. Looking at figure 2.4 it can then be concluded that the only
gain to use the LCTF would be in the order of 1.5 to 2. The Hamamatsu
camera has a factor ten better throughput using the blue LED; this factor
is six and three when using the green and red LED, respectively. If the
Hamamatsu camera would be used for a DM setup, for instance using six
cameras in parallel, it was derived that its throughput would be a factor
∼5 higher than the LCTF setup.

Comparison of simulation and measurements on the basis of integration
times show that the differences are smaller in measurements than was
predicted in simulation. The DM method would still be the fastest, but
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only by a factor of five instead of ∼20 which came out of the simulation.
The difference between LCTF and Fourier was similar in simulation and
measurement: about a factor 1.5. However, when taking overhead time into
account, the LCTF and especially the Fourier method perform worse than
the DM method. The time it takes to switch from wavelength bands in the
LCTF and to perform a Fourier transform are substantial. In conclusion,
it is clear that if dedicated setup for fast scanning of a high number of
fluorochromes is needed, the DM setup is to be preferred. It is tailored for
six spectral windows and therefore does not record any redundant spectral
information. If a setup is to be used for flexible essays, a proof of principle
may be acquired in an easy way using the LCTF setup. This setup is user
friendly and flexible, although some tuning of the ratios of integration time
has to be done for maximum performance. Using the LED calibration board
gives us the tool for compare setups in quantitative manner. It can be
used for comparison of setups, but also as a quality control system for the
throughput of one system in time.
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CHAPTER 3
FISH probe counting in

circulating tumor cells1

Sjoerd T. Ligthart, Joost F. Swennenhuis, Jan Greve, and Leon W.M.M.
Terstappen

3.1 Introduction

Presence of tumor cells in blood of patients with metastatic carcinomas
has been associated with poor progression free and overall survival [1, 2, 3].
Assessment of treatment targets on circulating tumor cells (CTC) before
initiation of therapy may provide means to guide therapy [4, 5, 6, 7, 8,
9, 10]. Characterization of CTC can be performed by fluorescence in situ
hybridization (FISH), which has been used to prove that CTC are indeed
malignant [11, 10], and that gene amplifications, deletions and translocations
related to certain therapies can be detected [4, 7, 8].

CTC are extremely rare in most patients: 1–10/7.5 ml of blood [12],
among about 50 million leukocytes and 50 billion erythrocytes within that
volume. For accurate characterization of CTC it is thus of utmost impor-
tance that no cell loss is incurred and that the error in the interpretation
of the results is kept to a minimum. The CellSearch R© system is the only
clinically validated system for counting CTC [12, 13]. It is based firstly on
immunomagnetic enrichment of the blood sample using the epithelial cell
adhesion molecule (EpCAM) labeled with ferrofluid. A second step consists
of labeling the enriched sample with fluorescent dyes for the nucleus and
cytokeratins 8, 18, and 19; CD45 labeling is added to recognize leukocytes.

1published as a chapter in: Cytokeratins - Tools in Oncology, Rijeka: Intech - open
access publisher, editor: Dr. Gerhard Hamilton, ISBN 978-953-308-10-7
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In a third step, fluorescence images are recorded of the enriched and la-
beled sample. CTC candidates are presented to a trained reviewer who
distinguishes CTC from debris and leukocytes. Limitation of the CellSearch
system is that only CTC expressing both EpCAM and CK 8, 18 and or 19
will be detected.

Recently, we have developed a semi-automated method for FISH analysis
of CTC after they have been identified by the CellSearch system. Inter-
pretation of FISH results is however encumbered by apoptosis of CTC,
which is observed frequently. In addition, counting of FISH dots can be
tiring and subjective, and thus likely results in differences in intra-reviewer
and inter-reviewer interpretation. Automation of counting of these FISH
signals -termed FISH dots hereafter- could resolve these challenges. Other
work has been done in the field of automated counting of FISH dots: on
cell lines [14], blood from healthy individuals [15], cells from amniotic fluid
[16], and on tissue [17]. An excellent overview of methods is available [18].
However, to our knowledge, automated dot counting has never been applied
in samples containing CTC. The nuclei and dots of these cells are extremely
heterogeneous in shape and intensity, and thus difficult to score, even by
reviewers. Therefore, we investigated the error in counting FISH dots, and
evaluated different methods to count FISH dots by a computer algorithm.

3.2 Method

3.2.1 patient samples

A prospective multicenter clinical trial that evaluated the utility of counting
CTC for predicting response to therapy, progression-free survival, and
overall survival in metastatic castration-resistant prostate cancer patients
was conducted [3]. A total of 65 clinical centers throughout the United
States and Europe participated in this study after formal institutional review
board approval. All patients were required to provide written informed
consent. Blood was collected before starting a new treatment and at monthly
intervals prior to the next cycle of therapy.

3.2.2 sample preparation for ctc enumeration

Blood samples were drawn into 10 ml evacuated blood draw tubes, main-
tained at room temperature, and processed within 96 hours of collection.
The CellSearch System (Veridex LLC, Raritan, NJ) consists of the Cell-
Tracks Autoprep R©, CellTracks Magnest R©, CellSearch Epithelial Cell Kit R©

and the CellTracks Analyzer II R©. The CellSearch Epithelial Cell Kit
contains: -EpCAM labeled ferrofluids; -staining reagents 4’,6-diamidino-2-
phenylindole (DAPI), CD45-allophycocyan (CD45-APC), cytokeratin 8, 18
phycoerythrin, cytokeratin 19 phycoerythrin (CK-PE); -buffers to enhance
cell capture [19], cell permeabilization and cell fixation. The CellTracks Au-
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Figure 3.1 : Image acquisition using the CellSearch system. 1) Ferrofluid and staining
reagents are added to the blood sample. 2) After immuno-magnetic enrichment and
fluorescent labeling, the sample is inserted into a cartridge. 3) The cartridge is inserted
into a Magnest to distribute the labeled cells over the analysis surface. 4) The cartridge
is scanned at 10× in the CellTracks Analyzer II. 5) CK+ DAPI+ objects are presented
to the reviewer for CTC selection. 6) Coordinates of selected CTC are collected. 7) The
coordinates and images from the scan are saved on a CD or DVD.

toprep immuno-magnetically enriches cells expressing EpCAM from 7.5 ml
of blood, fluorescently labels the enriched cells with DAPI, CD45-APC and
CK-PE, and re-suspends the cells in the cartridge placed in the CellTracks
Magnest. The design of the magnets guides the magnetically labeled cells
to the analysis surface [20].

3.2.3 data acquisition for ctc enumeration

The CellTracks Magnest containing the cartridge was placed inside the
CellTracks Analyzer II, a semi-automated fluorescence-based microscopy
system that acquires images using a 10×/0.45NA objective with filters
for DAPI, FITC, PE, and APC to cover the complete surface area of the
cartridge. The CellSearch software identifies objects staining with DAPI
and PE in the same location and generates images for the DAPI, FITC,
PE, and APC filters. A reviewer selects the CTC defined as nucleated
DAPI+ cells larger than 4 µm, lacking CD45-APC and expressing CK-PE
from the gallery of objects, which are tabulated by the computer. Figure
3.1 shows an overview of the image acquisition and identification of CTC.
After a scan, the cartridges were stored at room temperature until the
reviewer was finished reviewing the images. Accuracy, precision, linearity,
and reproducibility of the CellSearch system have been described elsewhere
[12].
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3.2.4 samples used for fish counting algorithm development

For algorithm development, images from cells of a patient in which no CTC
were detected were used. Leukocytes which were non-specifically carried
over during the CTC enrichment procedure were used as targets for this
purpose, as in these cells almost no chromosomal aberrations are present
and each cell should therefore contain two copies of each chromosome and
gene region. The sample was labeled with a centromere specific FISH probe
for chromosome 17 and a probe identifying the Her-2 gene region. The
centromere probe is larger than the Her-2 probe, a difference in size for
which the automated algorithm should be trained.

3.2.5 sample preparation for fish probes on ctc

For the validation of the algorithm, CTC from 47 patients with hormone
refractory metastatic prostate cancer labeled with probes identifying the
centromeres of chromosome 1, 7, 8 and 17 were used [10]. To preserve the
location of the CTC for future interrogation the buffer inside the cartridge
was carefully aspirated to avoid cell movement and replaced with methanol
acetic acid. After fixation of the cells, the cartridges were dried using a
forced air flow and processed for FISH or stored at −20 ◦C for later use.
FISH probes specific for the centromeric regions of chromosome 1, 7, 8, and
17 labeled with PlatinumBright-647, -550, -505, and -415, respectively, were
used in this study (Kreatech, Amsterdam, The Netherlands). The probe
mixture consisted of 50 µl of hybridization buffer (50% Formamide/1 x
SSC/10% Dextran Sulfate) containing FISH probes against 1, 7, 8, and 17
at 2 ng/µl each. The cartridges were placed on a 80 ◦C hotplate for 2 min,
with the glass facing towards the hotplate, and hybridized at 42 ◦C for 16 h.
After hybridization the cartridges were washed with PBS containing DAPI
as a nuclear counter stain.

3.2.6 data acquisition for fish probe detection in ctc

After hybridizing the FISH probes, the samples were scanned on a modified
CellTracks Analyzer II. This setup is equipped with a 40×/0.63NA objective,
to improve the resolution and light collection of the fluorescent FISH dots,
and filter cubes to detect DAPI, PlatinumBright-647, -550, -505, and 415.
The locations and images of the CTC identified in the initial 10× scan were
loaded from a CD. A software program was written to move to the locations
of interest and record Z-stacks to capture signals at a range of depths of
the objects of interest [10]. The DAPI signals are used to correlate the
40× with the 10× scan, thereby verifying if the CTC location is correct.
This was necessary, as the cells could shift up to ∼200 µm due to the FISH
protocol. The image acquisition procedure for the FISH probe detection is
shown in figure 3.2.
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Figure 3.2 : Procedure for FISH probe imaging. 1) The cartridge is re-opened to
carefully aspirate buffer and fixate the cells. 2) FISH reagents are added and the sample
is hybridized for 16 h. 3) Coordinates and images from previously assigned CTC are
loaded from a CD. 4) The modified CellTracks records DAPI images at 40× at the
designated coordinates and surroundings. 5) Cross correlation is performed between the
DAPI images from the 40× and 10× scan to verify the correct location of the CTC. 6)
After the right location is found, the FISH z-stacks are recorded.

3.2.7 algorithm for counting fish signals

Maximum intensity profiles were created of all the Z-stacks to speed up the
counting process for human reviewing. The algorithm to identify the nucleus
and count the FISH probes within this nucleus consists of five general steps:

1. enhancement and segmentation of the outline of the nucleus;

2. enhancement and segmentation of potential FISH objects;

3. exclusion of objects that are too noisy;

4. measurement of intensity and morphological features of the potential
objects;

5. exclusion of objects that do not meet inclusion criteria.

Nuclei were located in the DAPI image, which was enhanced using a
zero-crossing filter in combination with a gradient magnitude filter [21]. In
short, edges were enhanced using a morphological gradient magnitude filter.
The image of this filter was multiplied by an image filtered by a laplace-
plus-dgg filter. This filter created a combination of second order derivatives
in x and y, and combined it with an image of the second derivative in
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Figure 3.3 : Example of a distance transform aiding the watershed transform. Panel
A shows the original DAPI image containing three nuclei which is thresholded to give the
outline at panel B. This outline is difficult to watershed due to saturation in the original
image. The distance transform shown in panel C creates a new input for the watershed
transform, which successfully separates the nuclei as is shown in panel D.

the direction of the maximum gradient. The combined image of the two
filters is thresholded using a fixed threshold. On the outline of objects
larger than 2000 pixels a distance transform was applied: every outline
pixel value is replaced by its closest distance to the edge of the outline.
This procedure was then followed by a watershed transform, to verify if the
outline consisted of multiple maxima and were thus two or more closely
spaced objects. Figure 3.3 shows how a distance transform improves the
watershed transform in case of saturated DAPI signals. The nucleus that
was at least 250 pixels in size and located closest to the middle of the
image was selected as the final outline: only objects inside this outline are
considered for FISH dot counting.

In a next step, dot-like structures were enhanced. Usually this is per-
formed by employing a tophat filter [14]. We used a method termed
multiscale product [22] because it appeared better suited for dealing with
the heterogeneity of the sizes of the FISH probes. This filter increases the
intensity of objects in a range of radii, using a multiplication of Gaussian
kernels with different σ (ranging from 1.5 to 3.0 pixels):

Gproduct = (G−G0) · (G0 −G1) · (G1 −G2) (3.1)

with the 2D Gaussian kernel defined as

G(σi) =
1

2πσ2
i

e
− x

2+y2

2σ2
i . (3.2)

Using a range of Gaussian kernel sizes improves robustness to variations
in size of the objects of interest, compared to using a single kernel size
as is done in the tophat transform method. After applying the multiscale
product, objects were thresholded using the triangle threshold method
[23] of which the value was multiplied by a factor of 0.1 to include all
relevant dot-like structures, bright or dim. This thresholding method uses
the intensity histogram of the image and is especially suited for images with
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Figure 3.4 : Scheme for verifying downhill neighbors. By verifying objects in this way,
only dome shape objects are included. (adapted from [18])

few object pixels. After thresholding, a final verification was performed to
exclude objects that were too noisy. The dome finding method of Restif
was applied to the coordinates of the maximum of each object [18]. This
method checks nearest downhill neighbors in three level sets -up to three
pixels around the maximum- and excludes objects that have more than one
extra local maximum in this region. Figure 3.4 shows the method by which
nearest downhill neighbors were verified.

Restif et al. determined that if one extra local maximum is allowed, at
least 75% of the downhill neighbors should have a lower intensity. We allow
one extra local maximum to include very closely spaced FISH dots. In this
way, noisy objects are excluded, whether or not this noise is originating from
a high or low intensity background. Finally, measurements were performed
on these objects: size, maximum intensity, mean intensity, total intensity,
relative intensity, roundness, and perimeter were saved for every object.
Relative intensity was defined as the total intensity of the object related to
the total intensity of the brightest object within the same nucleus. Using
these measurements, different exclusion criteria were tested. Combinations
of measurements were tested on the leukocyte training set to exclude debris
and keep the true FISH dots. Figure 3.5 shows a schematic overview of the
procedure.

3.2.8 expert reviewing of samples

Next to the algorithm, five expert reviewers counted FISH probe signals in
the leukocyte images, using a macro written in the program ImageJ [24].
They reviewed the set two times: the first time they were asked to review
all images, the second time they could skip images that were unclear in
their view. In this way it could be measured how sure reviewers were. All
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Figure 3.5 : Schematic representation of the counting process. DAPI images are loaded
and their outline is determined. Within this outline, a multiscale product is applied.
Objects within outline 1 are thresholded and checked for dome-like structures. Finally,
the objects from outline 2 are counted and measured.

Figure 3.6 : Example of a recorded Z-stack of
FISH probes in a leukocyte in top-view, panel A,
and in slice-view, panel B. Distance between the
slices is 1 µm.

CTC samples were also reviewed by five expert reviewers.

3.3 Results

492 leukocytes and 500 CTC were imaged by the modified CellTracks
Analyzer II. Figure 3.6 shows an example of a FISH Z-stack from a leukocyte
in top and slice view, from which a maximum profile was created. The
profiles were processed by the algorithm, requiring 2 minutes for each
sample and counted by human reviewers, requiring 2 hours for each sample.
Figure 3.7 shows the different steps of the algorithm: segmentation of the
nucleus, enhancement of dot-like structures and the final outline of nucleus
and dots.
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Figure 3.7 : Example of the image processing steps on a recorded DAPI and FISH image.
1) original DAPI image; 2) edge enhanced DAPI image; 3) outline after thresholding and
watershed; 4) final DAPI outline; 5) original FISH image; 6) FISH image after multiscale
product; 7) outline FISH image; 8) final outlines of DAPI and FISH.

3.3.1 counting of the leukocyte training samples

After comparison of the manual and automated counts in the training
sample, it became apparent that only the measurements "size" and "relative
intensity" had a positive impact on the counting agreement of the algorithm.
After objects were measured and counted in the Her-2 channel, the objects
with a relative intensity lower than 30% of the brightest dot within that
nucleus were excluded. For the centromere 17 channel this threshold was
optimal at 25%. Objects smaller than 5 pixels were also excluded. Automatic
counting of chromosomes in leukocytes resulted in an accuracy of 97.8%
of the Her-2 dots and 97.5% of the centromere 17 dots. Accurate here
means "equal to the manual count of the subset of images were all reviewers
agreed upon" (N=409 for Her-2 and N=347 for centromere 17). The mean
inter-reviewer agreement over the whole data set was 92.6%±2.3% and
91.7%±1.7% and the mean intra-reviewer agreement was 96.5%±2.7% and
97.0%±1.8% for the Her-2 and centromere 17 probes, respectively. Table
3.1 gives an overview of the counting agreement after review of Her-2 and
centromere 17 of the whole data set and the data set containing only the
images with objects that could be easily identified by the reviewer, compared
with the count generated by the algorithm. In figure 3.8 the distribution of
the count of the PC and five reviewers is shown. The count of the reviewers
is represented by the mean and the standard deviation for each chromosome
count.
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Figure 3.8 : Number of leukocytes for the Her-2 gene probe (panel A) and the cen-
tromere of chromosome 17 probe (panel B) as counted by the PC and the five reviewers
(N=492).

Figure 3.9 : Example of FISH images. Panel A shows cases were all reviewers and
the PC agreed. Panel B shows examples were all the human reviewers agreed, but the
PC disagreed on the number of FISH dots. Panel C shows examples with the largest
discrepancy among reviewers.
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3.3.2 counting of samples containing ctc

After processing a sample containing CTC it became clear that the thresh-
old for relative intensity was strongly related to the quality of the FISH
probe used, and thus probe dependent. Slight adjustment of the relative
intensity criteria to a range from 14%-20% was necessary to ensure reason-
able counting by the algorithm. This value was correlated with the average
of the maximum intensity of all the objects in a channel: if this average
was high, then the relative intensity should be set lower. Figure 3.9 shows
three categories of examples from the data set: panel A shows examples
were all the reviewers and the PC agreed; panel B shows examples were
all reviewers agreed, but the PC did not; finally, panel C shows examples
where there was a large discrepancy between all reviewers and the PC.

Agreement of the PC with the subset of cells on which all reviewers
agreed was 76.1% (n=238), 83.9% (n=280), 86.6% (n=209), and 85.3%
(n=251) for probes from centromere 1, 7, 8, and 17 respectively. Mean
inter-reviewer agreement was 70.9%, 75.3%, 66.8%, and 72.3% for these
four channels. Figure 3.10 show the agreement between all reviewers in
detail and the histogram of the count.

3.4 Discussion

3.4.1 automated counting is necessary and feasible

We have shown that reliable automated counting of FISH probes on
EpCAM+DAPI+CK+CD45- cells is both necessary and feasible. Compar-
ing expert reviews revealed that intra-reviewer variation -the same expert
reviewing a data set twice- could be as high as 3.5% of the cells. Inter-
reviewer variation was higher: 7.5%; these numbers were both acquired for
the "easy" leukocyte samples with low copy numbers. Variation between
reviewers while reviewing CTC samples could be as high as 33.2% (cen-
tromere chromosome 8), showing that the number of signals in a nucleus is
of great influence on counting accuracy, as is the knowledge of the reviewer
that he or she is dealing with CTC or leukocytes. Furthermore, reviewing
500 FISH nuclei in four channels takes several hours, while the computer
only needs a few minutes.

When comparing these results to earlier work [14], not much improvement
is seen in the percentages of correctly assigned dots. However, FISH dot
counters are usually compared using cells from cell lines. These cells have a
high homogeneity and are thus a relative easy target. Our CTC samples
contain a very heterogeneous population of cells, of which some may be
apoptotic (for more exampels see [12]). Furthermore, the procedure for
labeling FISH dots in our system, although optimized for dot quality, still
induces large variations in staining intensity. The leukocytes that were used
as a training set were labeled using the same procedure. It is a two-step
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Figure 3.10 : Number of CTC containing 0-6 or >6 dots for the centromeres of
chromosomes 1, 7, 8, and 17 probe (panel A-D) as counted by the PC and the five
reviewers (N=500). The reviewer count is given as the mean of the frequency of each
number and its standard deviation.

rocket: first localize the CTC by an immuno assay, then follow-up using
the FISH procedure. Inter- and intra-reviewer variations in these samples
are high. Although no progress was made in the percentage of correctly
indentified dots, acquiring these precentage with CTC samples is a greater
challenge.

From the results it becomes clear that review of chromosome 1 and 8
was the most difficult, for both PC and reviewer. These probes had on
average a factor two lower intensities than the probes from chromosomes
7 and 17. Thus, the inter-reviewer agreement was lower as well as the
agreement with the PC. The dome finding part of the algorithm revealed
the same: it removed objects that were too noisy in 17% and 13% of the
nuclei in the channel from chromosome 1 and 8 respectively, and only in
8% of the nuclei from channels of chromosome 7 and 17. Signal to noise
ratios were clearly lower in channels were the agreement was lower.
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3.4.2 sources of error for human and pc

Agreement between PC and reviewer was good when control samples were
reviewed, and reasonable when CTC were reviewed. The difference between
the two data sets could be attributed to a few sources of error:

1) Nuclei were well separated in the leukocyte sample, the CTC samples
contained more clusters. While these clusters are usually easily resolved
by eye, the algorithm had more difficulty in this task. Figure 3.9, panel B
shows an example in row 1: two closely spaced nuclei with almost saturated
intensity. In this case the signals of the nuclei are close to saturation and
although a distance transform and watershed transform was applied, they
were still segmented as one. The PC thus over-counted in this example.

2) Because the DAPI signal from the nuclei can vary greatly between
samples, some signals fall just outside the segmented outline of the nucleus
as determined by the algorithm. This is the case when the signal from the
nucleus is relatively dim, as is shown in figure 3.9, panel B, row 4, where the
reviewers counted two probes and the PC counted only one. This challenge
could be resolved by dilating the outline nuclei more than is done now.
However, closely spaced nuclei will be resolved worse in this case. The
heterogeneity of the shape and size of the nucleus is largely due to presence
of ferrofluid in combination with the fixation step in the FISH procedure.
The ferrofluid particles were added to keep the cells tightly at the imaging
surface. However, due to the influence of these magnetic particles and the
tendency of some cells to adhere to surfaces, the DNA spreads over the
surface. Ferrofluid particles that line up under influence of the magnetic
field force these cells to spread even further. Thus in the DAPI images even
small islands of DNA were visible, that clearly were part of a bigger nucleus,
making it more difficult for the algorithm to measure a perfect outline of
the nucleus and include all the DNA in the dot counting. Figure 3.11 shows
an example of this effect.

3) The CTC sample had a larger variety in signal quality. Although
the segmentation algorithm is dynamic on the histogram, it is still difficult
for the PC to distinguish between what a reviewer calls a "true signal"
and debris. For example, when a reviewer sees two signals -a bright and a
relatively dim one-, he or she will usually count two. However, when five
bright signals and one dim signal are seen, the dim object is more often
discarded as being debris. Figure 3.9 panel B rows 2 and 3 show examples of
difference in counting because of relative intensity. In row 2, the reviewers
counted five and the pc four, while in row three, the reviewers counted two
and the PC three probes. The PC counts 100% reproducible, but does not
take into account these human considerations. For this analysis, it is thus
very difficult to get an absolute "golden truth".

4) It still is difficult for the algorithm to distinguish between a split probe
(one chromosome that had two signals) and two closely spaced chromosomes.
It is however not known how often a reviewer misclassifies such an object.
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Figure 3.11 : Example of a nu-
cleus spread due to fixation of the
cell. Note the vertical lines that
were created by ferrofluid aggre-
gates that follow the local magnetic
field. This type of nucleus is espe-
cially difficult to segment correctly.

A reviewer can structurally ignore or assign the split spots. The PC cannot
and counts these items according to the algorithm. The number of cells
that have these split spots may vary between samples and also within
samples (e.g. between lymphocyte and CTC). The PC might not be able
to distinguish between these, but if this factor appears to be of influence to
the result, the PC could use the measurements of the probes -i.e. relative
intensity coupled to size of closely spaced probes- to estimate the probability
of these splits in the cells. Leukocytes could be used as an internal control
for measuring the frequency of these splits and for estimating a relevant
"size/relative intensity" threshold.

The above error sources may seem a big challenge, but are not of
importance for the clinical relevant observations which is the presence
or absence of aneuploidy ascertain cancerous origin and the presence of
amplification or deletions of specific genes. CTC are very heterogeneous:
within one patient a wide variety of chromosomal aberrations could be
spotted. So whether or not a certain cell has five or six copies is of lesser
importance than the fact that this number is greater than two. When
comparing counts that are greater than two or not, the reviewer and PC
concur in 87%, 93%, 94%, and 94% of the cells for centromere 1, 7, 8, and 17
respectively for the data set in which all reviewers agree. This demonstrates
that in about 90% of the cases, the PC and reviewer will draw the same
conclusion about the ploidy status of the cells identified as tumor cells.

Figure 3.9 panel C shows examples in which the reviewers greatly
disagreed. Two examples of varying signal intensities (rows 1 and 2) and
two examples of difficulty of locating the true outline of the nucleus (row
3 en 4) are given. It could be argued that the example of row 1 is not
suitable for reviewing at all because the background staining is too high.
For reviewers, there is no real quantitative criterion whether or not to reject
a certain object based on its intensity distribution. However, the PC has
such a criterion: it can easily verify if a maximum of an object is surrounded
by more than two other local maxima. If this is the case, then an object
should be excluded. We perform this verification by means of the dome
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finding function. In this way, the PC performs more reliable than the human
reviewers.

3.4.3 future research

In the future, the algorithm may be optimized further by using clinical
data. When coupling for instance response to a therapy of a patient to the
aberration of the genes in the CTC, a better golden truth may be found.
Furthermore, quality of FISH could still be improved. Split probes are
still a big challenge for the PC, but also for establishing a good count by
reviewers. Consequently a quality score could be set by the algorithm by
measuring intensity variations, for instance in carried-over leukocytes. This
score could be used as an internal control in each patient sample to adjust
exclusion criteria and to reject cells that are not suitable for interpretation.
Finally, removal of ferrofluid could greatly improve the segmentation of the
nucleus. Aggregation of ferrofluid particles disturbs the natural shape of the
nucleus and blocks a fraction of the fluorescence light. Implementation of
physical filters to enrich CTC by size would not require any ferrofluid and
could be an improvement in the next generation CTC capturing devices.
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CHAPTER 4
Image analysis algorithm for

the recognition of
Circulating Tumor Cells1

Sjoerd T. Ligthart

Abstract

Circulating tumor cells (CTC) in patients with metastatic carcinomas
are associated with poor survival and can be used to guide therapy. How-
ever, classification of CTC remains subjective, as they are morphologically
heterogeneous. We acquired digital images, using the CellSearchR© system,
of EpCAM positive circulating objects captured from the blood of 185 cas-
tration resistant prostate cancer (CRPC) patients and 68 healthy subjects
to define CTC by computerized algorithms. Patient survival data was used
as the training parameter for the computer defined CTC. The optimal CTC
definition was selected based on: 1. High Cox Hazard ratio (HR) for both
baseline and follow-up samples; 2. Higher HR for follow-up than baseline
samples since these patients received drugs with antitumor activity; 3. Low
relative and absolute count in control samples. Our computer-generated
CTC definition resulted in HRs of 3.1 for baseline and 4.8 for follow-up sam-
ples after dichotomization on the median number of objects found at baseline,
which is comparable to the manual CellSearch CTC definition (Baseline HR
2.9, follow-up HR 4.5). Processing of a sample using the automated classifier

1This chapter contains the technical details of the image analysis approach for
automated CTC enumeration as described in: S.T. Ligthart, F.A.W. Coumans, G.
Attard, A. Mulick Cassidy, J. S. De Bono & L.W.M.M. Terstappen "Unbiased and
Automated Identification of a Circulating Tumour Cell Definition that Associates with
Overall Survival" Plos One 2011, DOI:10.1371/journal.pone.0027419
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required no operator intervention, compared to up to 39 minutes of review
per sample by highly trained operators in the CellSearch method. Summa-
rizing, we have created a definition for CTC using automated counting that
compares favorably to manual counting by the CellSearch definition, is rapid
and reproducible.

4.1 Introduction

In recent years several studies have reported that counting circulating
tumor cells (CTC) can indicate the effectiveness of a therapy for advanced
cancer already after the first cycle of therapy [1, 2, 3, 4, 5, 6, 7, 8]. At
present, the CellSearch method is the only FDA validated method for
CTC enumeration [9]. In this system, CTC are enriched from 7.5 ml of
blood and fluorescently labeled with cytokeratin-phycoerythrin (CK-PE),
CD45-allophycocyan (CD45-APC) and the nuclear dye 4́,6-diamidino-2-
phenylindole (DAPI). The recorded fluorescence images of CK, DNA, CD45
and a FITC channel are segmented on the basis of being positive for CK
and DNA and are then presented to a trained reviewer.

For CTC classification by a reviewer, objects need to be CK+, DAPI+,
CD45-, >4µm in size and have a cell-like morphology. This procedure is very
laborious, time-consuming and can be highly subjective. Moreover, CTC
are known to be morphologically heterogeneous [1] and different laboratories
have slightly different definitions of what constitutes a CTC, especially in
the case of objects that are dead or apoptotic [10]. Because CTC occur
at very low frequencies, misjudging a few events may be very significant
[11]. Furthermore, the definition of a CellSearch CTC that has been used
to date may not be optimal. Our group recently reported that tumor micro
particles (TMPs) -objects that are EpCAM+CK+CD45- and smaller than
4 µm- have the same prognostic value as manually counted "CTC" [12],
suggesting alternative definitions for CTC evaluation should be considered.

Here we present the results of a new approach to identify CTC in images
recorded by ten CellSearch systems from samples of castration-resistant
prostate cancer (CRPC) patients [13]. We recorded images before treatment
(baseline samples) and from the first follow-up sample. Our hypothesis
was that using solely survival data as a training feature, an automated
algorithm could be optimized to count CTC with the same fidelity as
the manual CellSearch method. We stipulated that such an algorithm
needed to identify candidate CTC, extract several relevant properties and
compare the candidate to a range of known parameters. The algorithm
should in principal at first select all objects that are present: CTC are
so heterogeneous that a minimal number of assumptions should be made
about shape, intensity distribution, and size, in order to avoid excluding
any objects that could be of importance. CTC are very rare objects and
the maximum number of objects with clinical impact should therefore be
included.
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Automation of cell identification and characterization on cells other than
CTC has been researched extensively. Several free-ware image processing
packages are available that can be used for batch processing of cytological
images such as ImageJ ([14], http://rsbweb.nih.gov/ij/), CellProfiler ([15],
http://www.cellprofiler.org/), and for time laps images CellCognition ([16],
http://www.cellcognition.org/). Commercial software packages are also
available, examples are Imaris (Bitplane AG, Zurich Switserland), Auto-
quant (Media Cybernetics, Inc., Bethesda, MD), or Cyteseer (Vala Sciences
Inc, San Diego, CA). In addition numerical computation programs such as
Matlab (Mathworks, Natick, MA) and acquisition software such as Labview
(National Instruments, Austin TX) are available that contain image pro-
cessing toolboxes, which can be programmed easily for cytological images.
Next to options for image pre-processing for manual review, these packages
often offer possibilities of classification of cells using numerous parameters.

Requirements for our data set were: (i) short processing times as thou-
sands of images are to be processed, (ii) limited number of parameters as
for each patient only the time of survival after image acquisition is used
which easily can result in severe over-training, (iii) versatility in options
and ease of programming. The program that best suited these needs was
Matlab and this program was used for this study.

4.2 Materials and methods

4.2.1 patients

Development of image analysis algorithms for automated CTC enumera-
tion was performed on stored images from 10 CellSearch systems (Veridex
LLC, Raritan, NJ) from patients and controls participating in prospective
studies, all provided written informed consent. 276 patients were enrolled
in the IMMC-38 study [13], 231 were eligible and for 185 of those patients
images could be imported for baseline and first follow-up. All patients
had histologically confirmed prostate adenocarcinoma, castrate levels of
testosterone (<50 ng/ml) and progressive disease as defined by three con-
secutively rising PSA values. Baseline samples were taken up to 19 days
prior to commencement of new cytotoxic chemotherapy, follow-up samples
were taken 2–6 weeks after start of therapy. 121 patients started their first
line of chemotherapy. Of 185 IMMC-38 patients 118 (64%) died during the
study, median survival was 20.7 months and median duration of follow-up
for censored patients was 29.8 months. A total of 65 clinical centers in the
United States and Europe participated in this study. Images of 68 healthy
individuals participating in the IMMC-06 study (20, 21) were available as a
control group. This prospective trial was conducted at 55 clinical centers
throughout the US, the Netherlands, and the United Kingdom. Institutional
review boards at each center approved both study protocols.
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4.2.2 isolation of epcam+ objects and fluorescence imaging

The CellSearch system was used to image CTC. The system consists of a
CellTracks Autoprep R© for sample preparation and a CellTracks Analyzer
II R© for sample analysis [9]. The CellTracks Autoprep immuno-magnetically
enriches epithelial cells from 7.5 ml of blood using ferrofluids conjugated
to EpCAM. The enriched sample is stained with CK-PE antibodies di-
rected against cytokeratins 8, 18 and 19, a CD45-APC antibody for leuko-
cyte detection, and the nuclear dye 4’,6-diamidino-2-phenylindole (DAPI).
This enriched sample is then transferred to a magnetic cartridge where
all ferrofluid labeled objects are pulled towards a cover slip. The entire
cartridge cover slip is imaged by the CellTracks Analyzer II, a four-color
semi-automated fluorescence microscope that captures digital images for
four different fluorescent dyes using a 10×/0.45 NA objective and a CCD
camera with 6.7×6.7 µm sized pixels. Thus, although the objective has
a resolution of 556 nm using 500 nm light according to Abbe’s law, the
sampling by the CCD of 6.7/10 = 670 nm in the sample does not capture
this resolution fully, according to the Nyquist-Shannon sampling criterion.
Hence, the images in the CellTracks system are systematically undersam-
pled. The smallest distinguishable details in the images from the setup are
therefore ∼1.3 µm, as the citerion tells us that the cut-off frequency should
be sampled by two points minimally.

Next to the DAPI, PE and APC images, a fourth fluorescence channel
(emission 535±25 nm) is imaged as a control channel for exclusion of auto-
fluorescent debris. This channel will be termed "FITC" channel. Per
cartridge, 144–180 four-layer tiff images are saved per patient, which are
1280×1024 or 1380×1035 pixels in size, depending on when the instrument
was built. Images are compressed to save space from 12-bit to 8-bit by
normalizing each pixel value between 0–255, in which 0 is a mapping of the
dimmest pixel values from the image histogram and 255 is a mapping of the
brightest pixel values. Pixel values in between are mapped linearly between
0 and 255.

4.2.3 counting of manual ctc by human reviewers

After imaging by the Celltracks Analyzer II, the Celltracks software selects
objects that are DNA and CK positive. It performs this task by analyzing
10×10 pixel segments of the DNA and CK images. A segment is called
positive if, after re-scaling the 10×10 part from 0 to 255 by incorporating a
50×50 environment around the segment, at least 10% of the pixels have an
intensity above 100. In the next step, adjacent positive segments are merged
into larger squares. Segments that are positive for both CK and DNA are
shown in a thumbnail gallery. A trained operator reviews this gallery and
selects manual CTC (mCTC) as objects positive for DNA and CK, negative
for CD45 that are larger than 4×4 µm and have cell-like morphology.
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4.2.4 algorithm development for classifying automated ctc

Algorithm development for counting automated CTC (aCTC) was performed
in Matlab 2009a (Mathworks, Natick, MA) using the DIPimage toolbox
(Delft University of Technology, Delft, The Netherlands). This toolbox was
chosen because it works very intuitively, while still having a lot of useful
build-in image processing functions which work in any dimension. Batch
processing of images and measuring of parameters is implemented relatively
easy using the combination of Matlab, its parallel processing toolbox, and
the DIPimage toolbox. This is usually more difficult when trying to extend
dedicated software for image analysis. Figure 4.1 illustrates the method
used to develop the CTC classifier, which can be divided into four major
steps:

Step 1: Import images and select analysis area

CDs containing archived images of samples were collected for import to a
central hard drive. All imported 8-bit multipage tiff images were scaled
from 0–255 and had to be re-scaled to pseudo 12-bit using information
stored in the tiff-header. This critical step had to be performed in order
to quantitatively compare objects. Detection of the sample border was
performed via thresholding in the debris-FITC channel and the area outside
the border was excluded from further analysis. Cartridges were found to
have very irregular edges, especially at the corners, and it was therefore
necessary to compare the total selected area of the whole cartridge to
a training set that was acquired manually. Figure 4.2 shows several of
the following steps as an example of part of a cartridge. First, all FITC
images from a scan were sub-sampled by a factor of eight to avoid excessive
memory requirements and to neglect small details. Images expected to have
a certain orientated border were convolved with a line-shaped kernel to
amplify this orientation. This filtering was performed in order to close the
border: differences in border intensities and gaps were common.

Next, the resulting images were connected to each other to construct an
image of the surface of the total cartridge (see figure 4.2, panel 1). This
image was filtered by a gradient magnitude filter, using a Gaussian derivative
width of 8 pixels, to boost the edges (see figure 4.2, panel 2), and was then
thresholded via the triangle threshold method [17] to identify the cartridge
edges using the total image histogram (see figure 4.2, panel 3). The triangle
method was used because the border only takes up a small part of the image,
and thus does not show a large peak in the histogram. Selection of the area
where cells were located was done after inversion of the thresholded mask
and filling of the holes in the images. The area of interest was selected via
a binary propagation algorithm and the result was verified by comparison
to the possible area range between 72 and 92 mm2 (see figure 4.2, panel 4).
If the detected area failed this verification, boundaries were estimated using
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Figure 4.2 : Example of selection of cartridge
scan area. 1: original FITC images of one side
of a cartridge stitched together after application
of linear convolution filter to border images (ar-
row indicates an air bubble), 2: border enhanced
image by gradient magnitude filtering, 3: Bi-
nary image of thresholded borders (red color),
4: Selected scan area (red color) after inversion
of image 3, binary propagation of center square,
and size verification.

results from a fixed set of previously analyzed cartridges. This estimation
had to be applied for 8 samples (of 370, 2%), whose cartridges had very
irregular edges.

Step 2: Determine the optimal channel for segmentation

First step in automated image analysis is to determine where objects of
interest are and what their outline is, so-called segmentation. The samples
that were used for this step were all images from patient samples acquired
before initiation of therapy. Segmentation techniques are generally contour
based or region based: contour based techniques are aimed at finding the
contour or edges of objects, usually by applying edge enhancement step(s).
Region based methods can be subdivided in texture analysis, watershedding
and intensity thresholding. The last, most common, method can be applied
locally (i.e. in a part of an image) or globally (i.e. using all the images of one
cartridge). Choosing the right segmentation method is critical for further
processing and depends on the knowledge of the objects of interest. In our
images, every object that was visible slightly above the background was
of interest, therefore a very basic histogram-based thresholding algorithm
was chosen which could segment objects that appeared in very low or high
numbers: Zack’s triangle threshold.

Figure 4.3 shows a comparison of segmentation methods using three
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Figure 4.3 : Comparison of common thresholding procedures. Two original images
containing a small (1A) and large number of objects (1B) were thresholded using three
methods: triangle (2B and 2B), otsu (3A and 3B), and isodata (4A and 4B). The three
methods give similar results on an image with a large number of objects, but triangle finds
the correct number of objects in images which contain a small number of objects. Image
A1 is shown using a logarithmic intensity scale to show the texture in the background;
the left part of the image is part of the cartridge border.

methods on images containing low and high numbers of objects shown in
panel 1A and 1B. Column 2 shows the triangle method applied on these im-
ages, column 3 the isodata method (iterative method to find average between
foreground and background [18]), and column 4 the Otsu method (maximal
inter-class variance [19]). Figure 4.3 panel 1A shows the image using a log
scale to visualize the structure of the background. This background changed
dramatically from cartridge to cartridge, not only in intensity (which could
be compensated for by a common background subtraction method), but
also in texture. Background subtraction was therefore not used, as this
gave undesirable results (negative values, formation of extra contrast) when
using a top hat based background subtraction procedure [20]. The proper
method of background subtraction would be to record a black image with
no objects present and subtracting this black image from the images with
objects. However, such as black image was unfortunately unavailable. The
task of the thresholding method was to capture everything just above this
mixed background. The triangle threshold method is designed for this task.
Figure 4.4 shows a detail of the image of figure 4.3, panel 1A, in which the
three methods area again compared.

This algorithm was applied to the histogram of the total cartridge
(minus the excluded border) to avoid local disturbances by for example air
bubbles. Objects were segmented in six different channels: DAPI, FITC,
PE, APC, sum of DAPI and PE, and a maximum intensity profile of all
four channels. A constant offset of 20 was added to each threshold value for
each channel in order to be as sensitive as possible, but not to segment large
areas of noise. This offset was particularly necessary because of the shape
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Figure 4.4 : Detail of a PE image (1), and masks as thresholded by the triangle (2),
otsu (3), and isodata (4) methods.

of histogram after the conversion of intensity values from 8-bit to pseudo
12-bit. This conversion caused undesired valleys in the background part
of the histogram, which could lead to threshold value which was too low.
The sum of DAPI and PE channel was chosen because CellSearch selects
objects positive in both PE and DAPI for review. The maximum intensity
profile was expected to approach the actual outline of cells in the cartridge
most accurately. Objects smaller than 9 pixels and larger than 2000 pixels
were rejected. There were too many objects smaller than 9 pixels, most
of which looked like noise on close examination. Objects larger than 2000
pixels (∼900 µm2) cannot be single cellular objects. For each investigated
segmentation channel the HR was determined after dichotomization of the
patient group on the median number of segmented objects per patient. The
channel, which yielded the highest HR was selected for further analysis.

Step 3: Select four independent properties with highest impact on HR

Objects can be characterized by measuring many features, see for rigorous
examples on cell lines [21, 22]. For each object that was found in the selected
segmentation method, 24 basic features were extracted; peak intensity,
standard deviation of intensity, mean intensity and total intensity in the
DAPI, FITC, PE, APC channels, as well as roundness, size, height and
width, perimeter, first and second moments of inertia, and center of gravity
in the segmentation channel. This set of basic features was chosen because
the 10×/0.45 images do not show enough detail to measure higher level
morphological features and the CTC are very heterogeneous. We required
at least 15 samples per feature included in the classifier to prevent over
fitting, four features were selected because there were only 68 samples in
the healthy controls [23]. Selection of high impact features was achieved
by univariate analysis. For each feature, objects were excluded if they
were above or below a variable threshold. At each threshold tested, the
HR was determined by dichotomizing patients on the median number of
objects found in the patient population. The maximum obtained HR was
determined for each feature and features were ranked according to HR.
The covariance matrices were also derived for all features. Features with
correlation coefficients less than 0.4 with all features ranked higher in HR
were selected for further classifier development.
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Step 4: Create classifiers and use bootstrap aggregating to test for
robustness

A classifier required an object to fall within the inclusion criteria for each
of the 4 features. 16464 different classifiers were created by varying the
inclusion criteria independently. Performance of each classifier was tested
against our training set of baseline and follow-up samples. To prevent over-
training of the classifier due to possible high impact of a few dominating
samples, the bootstrap aggregating method [24] was employed to test the
robustness of each classifier. Each classifier was tested on 402 sets of 185
random pickings -with replacement- from the total of 185 samples. When
picking n samples with replacement from a group with n samples using a
large set, 63% of the samples are expected to be unique. Taking 402 sets of
185 random numbers results in each sample appearing approximately 402
times with a coefficient of variation of 5%. In this way, strong dependency
on a few samples is averaged out. Furthermore, when deriving a HR after
402 picks, the spread of this HR provides a confidence interval (CI) and
thus a comparative measure for stability. The optimal classifier needed to
meet the following requirements:

1. High HR in both baseline and follow-up samples.

2. Large ratio between the number of classified objects found in patients
and controls.

3. Very low absolute number of classified objects in the control samples.

4. HR from the follow-up samples higher than that of the baseline
samples.

5. CI of the HR is not above average of the other classifiers.

4.3 Results

4.3.1 processing of images

Stored images from the 185 CRPC patients with samples taken at baseline
and at first follow-up (2–5 weeks after baseline) and 68 healthy donors were
imported. Figure 4.1 shows a schematic representation of the procedure that
was used to process the images in such a way that an optimal classifier for
selecting aCTC could be acquired. Automated counting and classification of
objects took about 5 minutes per sample. Identification of candidate CTC in
the current system takes approximately 5 minutes. However, classification
of these objects by a human operator takes 0.5–39 minutes per sample
(median 5.0 min, mean 7.9 min, SD 8.4 min, N=43) according to the main
Veridex CellSearch processing lab. The reproducibility of counting aCTC
by the algorithm is 100%. Detailed results of each step are described in the
following sections.
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Figure 4.5 : Example of the influence of thresholding of a feature on the Cox hazard
ratio. After segmentation of objects in the PE channel, the patient group is dichotomized
on the median count and a base HR is derived. Varying a lower threshold from 0–4000
grey level counts on the feature "peak value" for all four channels DAPI, FITC, PE, and
APC (panel A–D respectively) resulted in a varying HR (black line) and decreased the
median number of objects of the patients and controls (grey lines) that were included.

4.3.2 optimal channel for segmentation

Segmentation in the four image channels, the PE/DAPI sum and the
maximum intensity profile was performed on 185 baseline samples. The
HR after dichotomization on the median number of objects found was 1.2
in the FITC channel, 1.3 in the APC channel, 1.6 in the DAPI and the
DAPI/PE sum channels, 1.7 in the maximum intensity profile and 2.3 in
the PE channel. In the 185 baseline samples a total of 262282 objects
were found within the PE channel, these objects were used for the feature
selection step in the algorithm development process.

4.3.3 features with highest impact on hr

The values of the 24 measured features were determined for each object. For
each feature, all objects were tested against thresholds at various levels and
for each level the HR was determined. The maximum HR was determined
for each feature. Figure 4.5 shows the results for four of these analyses,
including only events that exceed a minimum "peak signal intensity" in
the four channels. Panel A and C show that selecting on this feature - and
thereby rejecting debris - results in a higher HR; these features are therefore
of value. Panel B shows that objects have very low FITC peak values, HR is
near 1 for any minimum value and already at low minimum value the count
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drops to 0. Panels D shows that a minimum CD45-APC peak intensity
results in lower HRs than the base HR after segmentation.

The object features with the best discriminatory power based on the
above analysis were: Size (HR 3.0), total PE intensity (HR 3.0), total DAPI
intensity (HR 3.0), standard deviation of the PE intensity (HR 2.8), mean
PE intensity (HR 2.8), peak PE intensity (HR 2.8), peak DAPI intensity
(HR 2.8), mean DAPI intensity (HR 2.8), total APC intensity (HR 2.8),
standard deviation DAPI intensity (HR 2.6), and peak APC intensity (HR
2.5). After deriving the covariance matrix of these features, the ρ-correlation
value between each feature was determined. The feature with the highest
HR was chosen first. Next, features were chosen in descending order of
HR provided they had a correlation of less than 0.4 with features already
chosen. As a result the total intensity features were not selected as they had
too much correlation with the size of the feature. Four features with both
high influence on the HR and low inter-feature correlation were selected for
further analysis:

1. Size of object

2. Standard deviation of signal in the PE-CK channel

3. Peak value of signal in the DAPI-DNA channel

4. Peak value of signal in the APC-CD45 channel

4.3.4 rules to assign actc

Acceptance ranges of features were varied simultaneously to construct 16464
different classifiers. In some classifiers the acceptance ranges for one or
more features were set wide open, effectively reducing a classifier to 2 or
3 features. Each of these classifiers was tested by means of bootstrapping;
the acquired variation in HR was used as a measure for the robustness of
the classifier. Follow-up samples from 185 patients and 68 control samples
were now included to determine the optimal classifier.

Figure 4.6A shows the average HR after bootstrapping of the baseline
samples from the 16464 classifiers plotted against the HR on the follow-up
samples, after patient groups were dichotomized on the median number of
objects. The figure illustrates that many classifiers in this data set can be
chosen that provide a higher HR for both baseline and follow-up samples as
compared to the manual CellSearch CTC definition (indicated with the red
cross in the figure). Figure 4.6B shows the performance of the classifiers on
4 of our 5 selection rules (the spread of the HR after bootstrapping is not
shown in this figure). The optimal classifier is indicated by the arrow in
figures 4.6A and 4.6B. In this data set, the selected classifier has only one
background object classified as an aCTC in the 68 controls, a high mean
bootstrapped HR of 4.2 and a HR for follow-up samples that is 1.5 times



ThesisSjoerd_v1 April 16, 2012 23:05 Page 73 �
�	

�
�	 �
�	

�
�	

73

C
H

A
P
T

E
R

4.
IM

A
G

E
A

N
A

L
Y

S
IS

A
L
G

O
R

IT
H

M
F
O

R
C

T
C

R
E
C

O
G

N
IT

IO
NFigure 4.6 : Scatter plots showing the relation between the HR of 185 baseline and 185

follow-up samples and the 16464 classifiers. Panel A shows the HRs of baseline versus
follow-up samples for all the 16464 classifiers. The arrow depicts our optimal classifier,
the red cross depicts the HR derived using the CellSearch CTC definition. Panel B shows
the mean HR of baseline and follow up samples versus the mean number of particles
found in patient samples divided by the mean number of objects found in control samples
of all the 16464 classifiers. This ratio was set to 7000 if there were no objects found in
the control samples. The color indicates the HR of the follow-up samples divided by the
HR of the baseline samples and the size of the circles indicates the number of objects
classified in all 68 control samples. This size was set equal to 1 object if there were no
objects found in the control samples.
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higher than the baseline HR. The optimal classifier included objects with a
CK-PE standard deviation higher than 50 counts, a size range of 75–500
pixels (34–224 µm2), a DNA-DAPI peak value of at least 170 counts and a
CD45-APC peak value less than 60 counts. Standard deviation (SD) of the
spread of the HR after bootstrapping for this classifier was 0.7 and 1.3 for
baseline and follow-up samples respectively.

4.3.5 automatic ctc count versus manual ctc count in
patients and controls

In the baseline samples the aCTC counts ranged from 0 to 3384 (total 14439,
median 5, mean 78, SD 333) compared to mCTC counts of 0 to 5925 (total
18706, median 7, mean 101, SD 497). The R2-correlation between aCTC (x)
and mCTC (y) was 0.80 (slope = 1.33, intercept = -3.03). In the follow-up
samples the aCTC counts ranged from 0 to 870 (total 4992, median 2, mean
27, SD 86) compared to mCTC counts of 0 to 545 (total 5546, median 2,
mean 30, SD 87). The R2-correlation was 0.67 (slope = 0.85, intercept
= 7.18). In the 68 control samples 1 object was classified as aCTC and
0 objects as mCTC. Cox regression yielded a HR, by dichotomizing the
patient group on the median baseline count, of 3.1 (95% CI 2.1–4.7) for
aCTC and a HR of 2.9 (95% CI 2.0–4.4) for mCTC. For first follow-up
samples we found a HR of 4.8 (95% CI (3.2–7.3) for aCTC and a HR of 4.5
(95% 3.0–6.8) for mCTC.

4.4 Discussion

Multicenter prospective clinical studies have shown a significant relation
between the presence of mCTC defined by the CellSearch CTC definition
and poor progression-free and overall survival [2, 3, 4, 5, 6, 7, 8, 13]. It
is envisioned that the clinical use of CTC studies will rapidly increase
in the near future. Translational studies are, however, hindered by the
laborious, manual CTC identification process, which increases study costs
and is associated with variability of CTC classification by different operators.
We have recently shown that all circulating EpCAM+CK+CD45- objects
predict overall survival in castration-resistant prostate cancer and that
different morphological definitions for CTC can be used, supporting the
possibility that automated and clinically relevant CTC identification is
feasible [12].

Utilizing overall survival from a cohort of patients with metastatic
castration resistant prostate cancer, we have evaluated all the EpCAM
positive circulating objects detected by ten CellSearch systems to determine
the most clinically relevant automated definition for CTC identification.
We have now shown that automated counting of EpCAM+ CK+ objects is
fast, 100% reproducible and comparable to the manual count performed
utilizing the established FDA-cleared method. It must be stressed that our
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automatic count was only compared to the one manual count performed
during the study [13]. In an earlier study it was found that in only 50%
of cases two independent readers will read the same number of mCTC
[11]. Although this does not always change the assignment of a patient as
favorable or unfavorable, it shows how variable human perception can be.

Optimization of the aCTC classifier was a challenge during this research.
There are many ways of testing and optimizing classifiers to improve ro-
bustness. However, most of these methods require a training set for which
an absolute ground truth is known. Unfortunately in this research, this
ground truth cannot be established. After enrichment of the blood sample,
many objects still remain that have no influence on patient survival. The
impact on survival of each object cannot be verified by inspecting it. The
Cox hazard ratio and the number of objects in controls are our measure if
a classifier is working properly. This indirect measure, which can only be
evaluated by looking at a group of patients, cannot assure which objects are
100% responsible for patient survival. By using the bootstrap method we
have chosen the classifier that was least influenced by certain dominating
patients and gave consistent results for every subset of the total patient
group. In this way we reduced the risk of over-training of the classifier. We
found that the classifiers that were most promising had an equal spread in
HR.

In the field of image processing, many pre-processing steps may be
applied to the images that are recorded. Before segmentation, edge en-
hancement may be applied, as well as smoothing, background correction
and many more. The impact of such procedures may increase or reduce
the fidelity of a classifier in unpredictable ways. We did not apply any
pre-processing to avoid making any presumptions about what kind of parti-
cles we were looking for. This led to an independent analysis of the aCTC
definition.

The aCTC classifier that was chosen resulted in the identification of
one object in the control samples, which is a very low false positive rate.
Usually, such an auto-fluorescent object is discarded if it is positive in the
FITC channel. The reviewers use this channel as a verification measure for
debris. However, using the feature "maximum value in the FITC channel"
in the classifier did not yield an improvement over the existing classifier.
It was therefore concluded that some of the objects positive in the FITC
channel were important for patient survival. This was surprising, as no
fluorescent label was used in this channel. Bleed through of fluorescence
signal from bright PE objects into this FITC channels was the likely cause
for this observation. Not requiring a FITC feature is advantageous since this
channel can now be used to not only detect the presence but also quantify
the expression of biomarkers on the CTC such as Her-2 [25, 26, 27, 28].

For the purpose of the development of the aCTC classifier patients
were divided into two groups based on the median aCTC count in the
training set of 185 baseline samples. This division was chosen to minimize
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statistical error in the HR. The median for the chosen aCTC classifier
on the baseline samples was 5 aCTC and resulted in a HR of 3.1. The
current standard CellSearch method presents to the reviewer CK+ DAPI+
objects for classification with a threshold of 5 or more mCTC being used
to discriminate between those patients with a favorable and unfavorable
prognosis. In an earlier study we argued that this threshold of 5 mCTC
could be mainly attributed to error introduced by human interpretation
[11]. As this error is eliminated by the automated method one could argue
that the presence of any CTC with the automated method can be used to
identify patients at risk.

Although the patient groups were dichotomized, it is clear that the
presence of larger number of CTC is related to a poorer prognosis; deter-
mination of a meaningful increase or decrease in CTC upon treatment is
however difficult to assess reliably, as the number of CTC that are detected
are so low that a decrease or increase is often statistically insignificant.
Exploration of alternative definitions that for example include tumor micro
particles that occur in larger numbers may resolve this issue.
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CHAPTER 5
Unbiased and Automated

Identification of a
Circulating Tumour Cell

Definition that Associates
with Overall Survival1

Sjoerd T. Ligthart, Frank A.W. Coumans, Gerhardt Attard, Amy Mulick
Cassidy, Johann S. de Bono, and Leon W.M.M. Terstappen

Abstract

Circulating tumour cells (CTC) in patients with metastatic carcinomas
are associated with poor survival and can be used to guide therapy. Clas-
sification of CTC however remains subjective, as they are morphologically
heterogeneous. We acquired digital images, using the CellSearchR© system,
from blood of 185 castration resistant prostate cancer (CRPC) patients and
68 healthy subjects to define CTC by computer algorithms. Patient survival
data was used as the training parameter for the computer to define CTC.
The computer-generated CTC definition was validated on a separate CRPC
dataset comprising 100 patients. The optimal definition of the computer
defined CTC (aCTC) was stricter as compared to the manual CellSearch
CTC (mCTC) definition and as a consequence aCTC were less frequent.

1published as S.T. Ligthart, F.A.W. Coumans, G. Attard, A. Mulick Cassidy, J.
S. De Bono, and L.W.M.M. Terstappen "Unbiased and Automated Identification of a
Circulating Tumour Cell Definition that Associates with Overall Survival" Plos One
2011, DOI:10.1371/journal.pone.0027419
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The computer-generated CTC definition resulted in hazard ratios (HRs) of
2.8 for baseline and 3.9 for follow-up samples, which is comparable to the
mCTC definition (baseline HR 2.9, follow-up HR 4.5). Validation resulted
in HRs at baseline/follow-up of 3.9/5.4 for computer and 4.8/5.8 for manual
definitions. In conclusion, we have defined and validated CTC by clinical
outcome using a perfectly reproducing automated algorithm.

5.1 Introduction

In recent years, several studies have reported that a change in circulating
tumour cell (CTC) count could indicate whether a therapy for advanced
cancer is effective [1, 2, 3, 4, 5, 6, 7]. It is envisioned that the clinical use of
CTC as a pharmacodynamic and predictive biomarker will rapidly increase
in the near future, especially in advanced prostate and breast cancers [8].
Currently, the CellSearch R© method is the only clinically validated and FDA-
cleared method for CTC enumeration [9]. In this system, objects that are
positive for epithelial cell adhesion molecule (EpCAM) antigen are enriched
from 7.5 ml of blood and then stained with cytokeratin-phycoerythrin
(CK-PE), CD45-allophycocyanin (CD45-APC) and the nuclear dye 4’,6-
diamidino-2-phenylindole (DAPI). The recorded fluorescence images of
CK-PE, DNA-DAPI, CD45-APC and a debris-fluorescein (FITC) channel
are segmented on the basis of being positive for CK-PE and DAPI and
are then presented to a trained reviewer for identification of CTC that are
CK-PE positive, CD45-APC negative, 4 µm in diameter, DAPI-positive,
and have a cell-like morphology.

This manual procedure is laborious, time-consuming and can be highly
subjective. For example, others have described an inter-reviewer variation in
manual CTC enumeration of 4% to 31% (median 14%) [10]. Moreover, CTC
are known to be morphologically heterogeneous and in fact, different labora-
tories have used different definitions for what constitutes a CTC, especially
for objects that are dead or apoptotic [2, 10]. CTC can occur at very low
frequencies and therefore misjudging a few events could be very significant
[11]. Also, the definition of what to call a CTC that is currently used may
not be optimal. A recent report showed that tumour micro particles (TMPs,
objects that are smaller than 4 µm and EpCAM+CK+CD45-) are also
associated with unfavorable prognosis, suggesting alternative definitions for
CTC evaluation should be considered [12].

Here we present the results of a new approach to identify CTC in images
captured by the system in samples from castration-resistant prostate cancer
(CRPC) patients. We recorded images before treatment (baseline samples)
and from a follow-up sample taken 2–6 weeks after start of therapy. Our
hypothesis was that using survival data as the only training parameter, an
automated algorithm could be optimized to define and count CTC with the
same fidelity as the manual CellSearch method (mCTC). This algorithm
needs to identify automated CTC (aCTC) candidates, characterize them
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and compare the candidates to a range of known features. Replacement
of manual CTC counting with an automated method would significantly
reduce cost and more importantly, eliminate inter- and intra-laboratory
variation that could be clinically important in cases with low CTC counts.
Moreover, a consensus definition for what constitutes a CTC is urgently
required [13]. By using an unbiased approach to identify clinically important
events, our analyses informs on the validity of different criteria currently
being used, which were validated on an independent data set.

5.2 Methods

5.2.1 ethics statement

Development of image analysis algorithms for automated CTC enumeration
was performed on stored images from ten CellSearch systems (Veridex
LLC, Raritan, NJ) from patients participating in the prospective IMMC-38
study (NCT00133900) and healthy individuals participating in the IMMC-06
study (NCT00133913) were available [7, 14]. For validation of the algorithm,
images were used from samples from patients participating in Phase I and
II clinical studies of abiraterone acetate (NCT00473512) conducted at the
Royal Marsden NHS Foundation Trust and reported previously [15, 16, 17].
Samples were processed at The Institute of Cancer Research (ICR) (Sutton,
UK) and archived images were sent for automated analysis at the University
of Twente (Netherlands). The University of Twente was blinded to survival
data for the validation samples. These studies were approved by the
Ethics Review Committees of the participating centres: the United States
Institutional Review Board for IMMC-38; the United States Food and
Drug Administration and the United Kingdom Medicines and Healthcare
Products Regulatory Agency for abiraterone acetate. All patients and
healthy individuals provided written informed consent.

5.2.2 participants

All patients had histologically confirmed prostate adenocarcinoma, castrate
levels of testosterone (<50 ng/ml) and progressive disease as defined by
three consecutively rising PSA values [18]. Patients included in IMMC-38
were commencing a new cytotoxic therapy. Patients with brain metastases
or a history of other malignancies within the last 5 years were excluded. 276
patients were enrolled in IMMC-38, 231 met eligibility criteria and for 185
of those patients images could be imported for baseline and first follow-up
[14]. Baseline samples were taken up to 19 days prior to commencement of
a new cytotoxic chemotherapy, follow-up samples were taken 2-6 weeks after
the start of therapy. 121 patients started their first line of chemotherapy.
A total of 65 clinical centres in the United States and Europe participated
in this study.
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In the abiraterone acetate studies, samples were collected from a total
of 100 patients. 89 patients contributed both a baseline and a follow-up
sample, 7 contributed only follow-up, 4 only baseline. Fifty-one patients were
chemotherapy naïve, and 44 patients were docetaxel-pretreated. Samples
collected up to 14 days before initiation of abiraterone acetate (93 samples)
and after one cycle (28 days) of therapy (96 samples) were used for this
analysis. Of 185 IMMC-38 patients 118 (64%) died during the study, in
the abiraterone acetate studies 73 of 100 (73%) died. Median survival
was 20.7 months for IMMC-38 and 31.5 months for abiraterone acetate.
Median duration of follow-up for censored patients was 29.8 months for
IMMC-38 and 41.8 months for abiraterone acetate. In addition, samples of
68 healthy individuals participating in the IMMC-06 study were available
[7]. Healthy individuals donated blood at three clinical centres in the US,
the Netherlands, and the United Kingdom.

5.2.3 manual counting of circulating tumour cells (mctc)

The CellSearch system was used to isolate and image EpCAM+ objects.
The CellSearch system consists of a CellTracks Autoprep for sample prepa-
ration [2, 9] and a CellTracks Analyzer II for sample analysis. The Cell-
Tracks Autoprep immuno-magnetically enriches epithelial cells from 7.5 ml
of blood using ferrofluids conjugated to epithelial cell adhesion molecule
antibodies (EpCAM). The enriched sample is stained with phycoerythrin-
conjugated (PE) antibodies directed against cytokeratins 8, 18, and 19
(CK), an allophycocyanin-conjugated (APC) antibody to CD45 and the
nuclear dye 4’,6-diamidino-2-phenylindole (DAPI). This enriched sample is
transferred to a magnetic cartridge where all ferrofluid labeled objects are
pulled towards an analysis surface. The entire analysis surface is imaged
by the CellTracks Analyzer II, a four-color semi-automated fluorescence
microscope that captures digital images for four different fluorescent dyes
using a 10×/0.45NA objective. In addition to the DAPI, PE and APC
images, a fourth fluorescence channel (emission 53±ś25 nm) is imaged as
a control channel for exclusion of auto-fluorescent debris. This channel
will be termed "FITC" channel. Per cartridge, a whole scan consists of
144–180 4-layer tiff images that are saved for each patient. After imaging
by the Celltracks analyzer, the software selects objects that are DNA and
CK positive and presents them to an operator in a thumbnail gallery. The
operators are trained to reviews these galleries to select the mCTC among
the objects. An mCTC is positive for DNA and CK, is negative for CD45,
is larger than 4×4 µm and has morphological features that are consistent
with those of a cell.
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5.2.4 automated counting of epcam+ objects using a
computer algorithm (actc)

CDs containing up to 180 archived four channel tiff images for each sample
belonging to the respective studies were collected for import to a central hard
drive. Objects were detected and classified using an automated algorithm
developed in Matlab 2009a (Mathworks, Natick, MA) using the DIPimage
toolbox (www.diplib.org). An outline of the method is given below and
shown in figure 5.1. The method was applied for each patient sample
separately. First, the true imaging area where all the objects were located
was determined via sample cartridge edge detection in the debris-FITC
channel. Candidate CTC objects were selected via object segmentation
in the CK-PE channel. Segmentation was performed using a threshold
which was determined for each sample via the channel image histogram [19].
Applying this threshold to the CK-PE images returned the outline, size and
location of the objects.

In the next step, measurements, termed features from here on, were
performed on these objects and the features providing the largest Cox hazard
ratio (HR, shown next to the features in figure 5.1) and low correlation
with other selected features were chosen for classification of these objects:
the standard deviation of the signal in the CK-PE channel, the peak signal
value in both the DNA-DAPI and CD45-APC channels and the size of
the objects. Finally, selection of aCTC was performed by comparing every
object to numerical inclusion criteria for these four features. The combined
inclusion criteria -termed classifier from here on- were varied to find the
aCTC definition that most strongly associated with high HR for baseline
and follow-up samples, a higher HR for follow-up than baseline samples, and
a low relative and absolute count in control samples. Bootstrap aggregation
was used to test the stability of the optimal classifier [20].

5.2.5 statistical analysis

The primary objective was to identify a CTC definition with the largest HR
between favourable and unfavourable patient groups and a low background
in the control group. During algorithm development, the median number of
events found was used to dichotomize patients into two groups. This ap-
proach allowed quick selection of a threshold, while ensuring that sufficient
patients are present in both the ’at risk’ and the ’not at risk’ groups. It also
allowed comparison of HR determined for different features and minimized
error in HR. For this approach to work there needs to be a continuous
relationship between survival and CTC count, which was previously demon-
strated for the IMMC-38 data [21]. After algorithm optimization, all patient
samples were processed by the algorithm and the training and validation
patient groups were dichotomized on cut-off values ranging 1–10 of aCTC
and mCTC to derive HR and median overall survival (OS) for baseline and
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first follow-up samples. Furthermore, a linear regression was performed for
comparison between the aCTC and mCTC count. Classifiers with reduced
features were tested to determine the impact of each feature. Pearson coeffi-
cient of determination R2 was determined between these populations using
Matlab. Statistical HR and Kaplan Meier analysis for the training dataset
was performed by S.T.L. using Matlab and GraphPad Prism v5. Statistical
HR and Kaplan Meier analysis for the validation dataset was performed by
A.M.C. at the ICR using Stata v10.1 (StataCorp) and GraphPad Prism v5.

5.3 Results

5.3.1 choosing the optimal classifier and processing of
samples

The classifier resulting in the optimal aCTC definition that most strongly
associated with high HR for baseline and follow-up samples was chosen. The
features that most strongly associated with OS were: a CK-PE standard
deviation >50 counts, a size range of 75–500 pixels (34–224 µm2), a DAPI-
DNA peak value >170 counts and a CD45-APC peak value <60 counts.
For every patient sample, the objects meeting these inclusion criteria were
added up to arrive at a final aCTC count per patient. The mCTC count
was performed by trained reviewers. Time needed for preparation of images
for mCTC assignment was similar to the time needed for complete aCTC
enumeration: both took 5 minutes. However, enumeration of these mCTC
by a human operator takes an additional 8 minutes per sample on average
(median 5, range 1–39, SD 8 minutes, N=43).

5.3.2 automated ctc count compared to manual ctc count in
patients and controls

After all the objects meeting the criteria of the optimal classifier were
summed for each patient sample, the aCTC count was compared with the
mCTC count. In the baseline samples the aCTC counts ranged from 0 to
3384 (median 5, mean 78, SD 333) compared to mCTC counts of 0 to 5925
(median 7, mean 101, SD 497). The R2 between aCTC and mCTC was 0.80
(slope = 1.33, intercept = -3.03), indicating that were more mCTC counted
than aCTC. In the follow-up samples aCTC counts ranged from 0 to 870
(median 2, mean 27, SD 86) compared to mCTC counts of 0 to 545 (median
2, mean 30, SD 87). The R2 was 0.67 (slope = 0.85, intercept = 7.18).
Figure 5.2 shows a scatter plot of the baseline and follow-up samples with
the linear regression and corresponding statistics of the combined baseline
and follow-up samples. In 68 control samples only one object was classified
as aCTC and zero objects as mCTC.

Figure 5.3 shows the frequency distributions of mCTC (median 7) and
aCTC (median 5) in baseline samples from patients and in controls for the
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Figure 5.2 : Scatter plot of baseline (dark grey) and first follow-up (light grey) samples,
counted by the aCTC and mCTC methods. The linear regression statistics apply to the
total data set. Quadrants were defined by the clinically used cut-off value of 5 mCTC
and the empirical determined value of 4 aCTC (dashed lines). In each quadrant, the
percentage of patients is shown.

optimal aCTC definition and three other definitions that are less strict:
without the CD45 feature (median 10), without the DAPI feature (median
40), and for TMP objects that are EpCAM+CK+CD45- (CK standard
value >10 counts; CD45 peak value <60 counts ) and <4 µm in diameter
(median 104). R2 between aCTC and mCTC was 0.78. Between aCTC and
the objects found with the classifiers without CD45 and DAPI the R2 were
0.95 and 0.82, respectively. Between the aCTC and TMP definition, the R2

was 0.56 (p<0.0001 for all R2).

5.3.3 defining cut-off values for actc and mctc

To arrive at a clinically relevant cut-off value for aCTC comparable to the
mCTC cut-off of 5 used in routine clinical practice, we used the linear
regression slope of 1.33 between aCTC and mCTC baseline measurements.
This resulted in a cut-off of 4 aCTC. In the scatter plot of figure 5.2 the
cut-offs are indicated creating four quadrants: two with concordant and
two with discordant results. The percentage of patients in each quadrant
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Figure 5.4 : Kaplan-Meier plots of the classifier (grey lines) and the manual CellSearch
(black lines) definition. The training set is shown in panel A (baseline, N=185) and panel
B (follow-up, N=185). Kaplan-Meier plots for the validation set are shown in panel
C (baseline, N=93) and panel D (follow-up, N=96). Censoring is indicated by vertical
marks on the Kaplan-Meier plot.

is provided. A total of 11% of patients had discordant results based on
the CTC cut-offs of mCTC and aCTC. The influence of other CTC cut-off
values from ≥1 to ≥10 CTC on the number of patients affected, the median
OS, HR and its significance for both baseline and follow-up samples were
determined and are shown in table 5.1 (p-values for all HRs <0.0001, except
baseline cut-off=1: p=0.0003 for aCTC and p=0.004 for mCTC).

Kaplan-Meier plots were generated for 185 baseline and 185 follow-up
samples using the standard cut-off value of 5 for mCTC and the cut-off
value for aCTC of 4. Figure 5.4, panel A shows the Kaplan-Meier plot for
the baseline samples. Cox regression yielded a HR of 2.8 (95% CI 1.9–4.1)
for aCTC and a HR of 2.9 (95% CI 2.0–4.4) for mCTC. Figure 5.4, panel
B shows the Kaplan-Meier plot for the follow-up samples. For the first
follow-up samples we found a HR of 3.9 (95% CI 2.6–5.9) for aCTC and a
HR of 4.5 (95% CI 3.0–6.8) for mCTC.

5.3.4 validation of automated ctc count

To validate the aCTC count an independent data set was used from 100
metastatic prostate cancer patients treated with abiraterone acetate. The
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set included 93 baseline samples 96 follow-up samples. In the baseline
samples the aCTC counts range was 0–1258 (median 3, mean 46, SD 152)
and a range of 0–1108 (median 6, mean 53 SD 151) was found for mCTC.
R2 between aCTC and mCTC was 0.28 (slope = 0.52, intercept = 28.76).
Exclusion of a single outlier resulted in a R2 of 0.90 (slope 1.72, intercept
4.07). In the follow-up samples the aCTC counts range was 0–2490 (median
2, mean 78, SD 326) and a range of 0–3573 (median 2, mean 74, SD 390)
with mCTC. R2 between aCTC and mCTC both was 0.83 (slope = 1.09,
intercept = –11.43). Kaplan-Meier plots were generated for 93 baseline
and 96 follow-up samples using the standard CTC cut-off of 5 for mCTC
and 4 for aCTC. Figure 5.4 panel C shows the Kaplan-meier plot from the
baseline samples. Cox regression resulted in a HR of 3.9 (95% CI 2.4–6.6)
for aCTC and a HR of 4.8 (95% CI 2.8–8.3) for mCTC. The Kaplan-Meier
plot from follow-up samples is presented in figure 5.4, panel D. A HR of 5.4
(95% CI 3.2–8.9) was found for aCTC and a HR of 5.8 (95% CI 3.4–9.8)
for mCTC (p-values for all HRs <0.0001). Table 5.2 shows the influence of
other cut-off values on the HR and OS.

5.4 Discussion

This is the first report of an algorithm-based automated method for unbiased
determination of a clinically significant definition for what constitutes a
CTC. We used stored images recorded by the CellSearch system from 185
patients with metastatic CRPC. While the algorithm was developed using
patients with metastatic CRPC receiving a cytotoxic agent (training cohort),
validation on patients receiving the highly active hormonal agent abiraterone
acetate (validation cohort) confirmed reproducibility of the enumeration
algorithm.

For the purpose of the development of the CTC classifier, patients were
divided into two groups based on the median aCTC count in the training
set of 185 baseline samples. This division was chosen to minimize statistical
error in the HR. The median count for the chosen aCTC classifier on the
baseline samples was 5 aCTC and resulted in a HR of 3.1. The current
standard CellSearch method presents the reviewer with CK+ DAPI+ objects
for classification: a threshold of 5 or more mCTC is used to discriminate
between patients with a favourable versus an unfavourable prognosis. In
an earlier study we reported that this threshold of 5 mCTC could be
mainly attributed to error introduced by human interpretation [11]. The
variability of counting aCTC by the algorithm is 0% compared to inter-
reviewer variability of 4% to 31% for mCTC (median 14%) [10]. As we have
eliminated this variability by using an automated method, one could argue
that the presence of any CTC could now be used to identify patients at
risk.

To identify a threshold for aCTC we used the correlation statistics
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between mCTC and aCTC and proposed a cut-off for aCTC of 4. As shown
in figure 5.4, the Kaplan-Meier plots before and after one cycle of treatment
using aCTC and mCTC are equivalent. The aCTC classifier that was
chosen detected up to one object in the control samples as can be seen in
figure 5.3. From this figure it becomes clear that a CD45 exclusion criterion
is necessary to suppress the number of background objects, although the
impact on the HR is small. The influence of the DAPI exclusion criterion is
large on HR: only cells with sufficient DNA should be included.

Although one would expect that counting tumour related events that
occur at a higher frequency -such as TMPs [12]- is more sensitive and
robust, the relationship with clinical outcome was less strong. The aCTC
definition was stricter as compared to the mCTC definition as is exemplified
by the frequency differences. R2 between TMP and aCTC was 0.56 and
TMPs were also present in the control group (see figure 5.3 bottom row).
This may suggest that the current definition of TMPs is a proxy for the
number of viable CTC, but in addition enumerates objects unrelated to
tumor metastasis (e.g. originating from cell death in tumor or healthy
tissue). Higher numbers of events are needed to improve robustness. TMPs
may provide these higher numbers, but additional markers are needed to
suppress the background signal in healthy volunteers.

The aCTC definition was validated using an independent data set. This
validation set showed that the classifier performs well with equivalent HRs
to those obtained with mCTC. Correlation with mCTC was quite low
(R2 0.28) due to one outlier. For this outlier, the algorithm counted 1258
aCTC, whereas the operator only counted 67 mCTC. Closer inspection
of this sample revealed that this sample had a very high density of cells.
This resulted in an overestimation of the number of CTC by the algorithm
and an underestimation of the number of CTC by the human operator.
Kaplan-Meier plots of baseline and follow-up using aCTC and mCTC from
the validation set illustrated in figure 5.4 strongly support the use of the
aCTC definition for routine clinical use. Whether or not the same definition
for an aCTC can be used for other cancers remains to be determined and
is currently being investigated in a large number of samples from breast
and colorectal cancer patients. The definition of aCTC in this study was
optimized towards the clinical outcome of patients and developed using
stored images taken with a 10×/0.45NA objective. The imaged objects
were selected immuno-magnetically targeting the EpCAM antigen and
stained with DAPI, CD45-APC, cytokeratin 8,18 and 19-PE. Alteration
of the microscope or reagents used to identify CTC will obliterate the
aCTC definition. To use this approach for other CTC capturing methods
clinical studies will need to be conducted and images stored for relating the
particular CTC definition to clinical outcome.

The CellSearch system is the first and currently the only clinically
validated method for CTC enumeration. The system was introduced in
2004 and its initial users were well-trained clinical researchers. The need
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for CTC counts in the clinic to manage patients with metastatic disease
is however rising quickly and is accompanied by a need for simplification,
higher reproducibility and a reduction of time needed to obtain a result,
i.e. cost reduction. The introduction of aCTC addresses these issues as
the need for extensively trained reviewers is eliminated, the algorithm is
perfectly reproducible and no operator time is needed to review the images.

In conclusion, we have identified and validated a definition for CTC using
an unbiased, automated algorithm that confirms that CK+DAPI+CD45-
cells are the EpCAM positive events most strongly associated with sur-
vival. Moreover, automated counting of CTC using our classifier compares
favourably to manual counting using the CellSearch system.
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CHAPTER 6
Morphology of circulating
tumor cells and survival in

breast, colorectal, and
prostate cancer1

Sjoerd T. Ligthart, Frank A.W. Coumans, Francois-Clément Bidard, Lieke
H.J. Simkens, Cees J.A. Punt, Marco de Groot, Gerhardt Attard, Johann
S. de Bono, Jean-Yves Pierga, and Leon W.M.M. Terstappen

Abstract

Background: Presence of circulating tumor cells (CTC) in patients with
metastatic breast, colorectal, and prostate cancer is indicative for poor
progression free and overall survival. An automated CTC (aCTC) algorithm
was developed to eliminate the variability associated with manual counting
of CTC (mCTC). This algorithm permits extraction of morphological data.
Here we validated the aCTC algorithm, which was trained using survival
data from prostate cancer patients, on CTC from breast and colorectal cancer
patients and investigated the role of quantitative morphological parameters.
Methodology: Stored images of samples from patients with benign and
malignant breast, colorectal, and prostate cancer, and healthy controls were
obtained using the CellSearch system. Images were re-analyzed, aCTC
identified, and their morphological parameters measured and correlated with
survival. Results: Correlation R2 between aCTC and mCTC was 0.48 for 725
breast, 0.84 for 1729 colorectal, and 0.68 for 559 prostate cancer. However,
no significant difference in the relation between survival and aCTC or mCTC

1Submitted.
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was found. Counts in 204 control samples were ≤1 aCTC. Size of aCTC and
nuclear-to-cytokeratin ratio had significant (p<0.05) impact on survival for
breast cancer patients only. Conclusions: Morphological parameters of CTC
differ between different cancer types. Although correlations between manual
and automated count are low, an algorithm can be used to identify CTC of
all cancer types with high prognostic value.

6.1 Introduction

Case studies showing the presence of tumor cells in blood of cancer patients
have been reported for more than a century [1, 2, 3, 4]. These circulating
tumor cells (CTC) are extremely rare and technology to reliably enumerate
CTC has only become available in recent years [5]. Studies conducted with
this validated system established the relation between the presence of CTC
and poor outcome [6, 7, 8, 9, 10]. The ability to assess the presence of
treatment targets on CTC demonstrates the potential for a real time liquid
biopsy and has certainly spurred the interest in CTC [11, 12, 13, 14, 15, 16].

The recent emergence of different technologies to identify CTC is accom-
panied with a large range of CTC definitions urging the need for standard-
ization [5, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. Although
different CTC characteristics may indeed relate to clinical outcome, it is
of utmost importance that counting and characterization of CTC can be
done accurately, reproducibly, and is validated in controlled clinical studies
[31]. Studies have shown that even in the FDA cleared CellSearch system
intra-reviewer, inter-reviewer, and inter-laboratory variability is substantial
[32, 33].

Recently, we developed a CTC detection algorithm that counts CTC
in images recorded by the CellSearch system [34]. This algorithm was
not developed to copy human reviewers that assign events as CTC, but
it used survival data of metastatic prostate cancer patients to arrive at a
definition that optimally stratified the patients into groups with favorable
and unfavorable survival. This algorithm eliminates reviewer variability,
is fast and decreases the cost of the CTC assay by elimination of the
time a reviewer spends on reviewing the images. Furthermore, it delivers
quantitative information about the objects it counts as CTC.

From case studies in breast and colorectal cancer it was found that
breast cancer CTC are somewhat rounder than cells from colorectal samples
[35, 36]. However, all studies show that CTC are morphologically very
heterogeneous [5]. In this study, we validated the CTC algorithm on images
of patients with metastatic colorectal and breast cancer and evaluated the
correlation of quantitative morphological parameters with clinical outcome
of patients with metastatic prostate, colorectal and breast cancer before
and after initiation of a new line of therapy.
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Table 6.1 : Patient characteristics.

Study IMMC-
01

IC2006-
04

CAIRO-
2

IMMC-
06

IMMC-
38

Abira-
terone

Type Breast Breast Colorectal Colorectal Prostate Prostate
N Patients 179 248 417 34 185 100
N Samples 283 442 1691 40 370 189
N Censored 75 193 180 10 67 26
Survival
(months)a

15.1
(0.4–48.6)

13.1
(0.2–33.3)

18.7
(0–60.8)

23.4
(0.8–39.1)

16.9
(1.9–38.7)

22.2
(0.9–53.2)

Follow-up
Censoredb

(months)

20.7
(1.3–48.6)

14.2
(1.4–33.3)

36.7
(0–60.8)

31.8
(22.8–39.1)

25.9
(2.4–38.7)

40.8
(9.2–53.2)

Therapy
linec

43/15/42% 100/0/0% 100/0/0% 62/29/9 67/16/17% 0/20/80%

Agea 58
(27–86)

57
(28–84)

63
(27–84)

65
(45–83)

69
(49–92)

70
(50–84)

a Median values shown with ranges in parentheses, b median duration of follow-up for
censored patients with ranges in parentheses, c % of patients with 1st, 2nd, 3+ line of
chemotherapy (% 1st/% 2nd/ % 3+).

6.2 Materials and Methods

6.2.1 patients

Samples of patients before they received treatment (baseline) and at first
follow-up after initiation of a new line of therapy from prospective multi-
center CTC studies were used in this study. For metastatic breast cancer,
fluorescence CellSearch images of 283 samples from 179 patients could be
imported from the IMMC-01 study and 482 samples from 248 patients from
the IC2006-04 study [7, 37]. For metastatic colorectal cancer, CellSearch
images of 1691 samples from 507 patients could be imported from the
CAIRO-2 and IMMC-06 studies [6, 38]. For castration resistant prostate
cancer (CRPC), images of 370 samples from 185 patients could be imported
from the IMMC-38 study and 189 samples from 100 patients could be im-
ported from the Abiraterone study [8, 11, 39]. From the IMMC-26 study,
images of 317 samples from 93 patients with benign colorectal disease and
200 samples from 61 patients with benign breast cancer disease were im-
ported [40, 41, 42]. In addition, 204 samples from healthy controls from
the IMMC-01 and IMMC-06 study were included in this study. Table 6.1
shows detailed characteristics of the patients enrolled in these studies. All
patients and healthy volunteers provided written informed consent. The
institutional review boards at each participating center approved the study
protocol.
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6.2.2 manual enumeration of circulating tumor cells

The CellSearch system (Veridex LLC, Raritan, NJ) was used to enumer-
ate CTC. The system consists of a CellTracks Autoprep R© for sample
preparation and a CellTracks Analyzer II R© for sample analysis [5, 43].
The CellTracks Autoprep immuno-magnetically enriches epithelial cells
from 7.5 ml of blood targeting the Epithelial Cell Adhesion Molecule (Ep-
CAM). The enriched sample is labeled with phycoerythrin-conjugated
(PE) antibodies directed against cytokeratins (CK) 8, 18 and 19, an
allophycocyanin-conjugated (APC) antibody against CD45 and the nuclear
dye 4’,6-diamidino-2-phenylindole (DAPI). After preparation the enriched
sample is transferred to a cartridge contained in a CellTracks MagNest.
All ferrofluid labeled objects are pulled towards the imaging surface of the
cartridge, which is placed on the CellTracks Analyzer II for image acquisi-
tion. The analyzer is a four-color semi-automated fluorescence microscope
that captures digital images in four different fluorescent channels using a
10×/0.45 NA objective and a charge-coupled device camera with 6.7×6.7
µm sized pixels. For each cartridge, 144–180 4-layer tiff images of DAPI,
FITC, PE, APC are saved per patient. After imaging, the system prese-
lects objects that are positive for DNA and CK and shows the images of
all fluorescence channels together with a DNA/CK overlay of all selected
objects in a gallery. Finally, a trained operator selects objects from the
gallery as manual CTC (mCTC) if they are DNA+CK+, CD45-, have a
cell-like morphology, and are larger than 4×4 µm.

6.2.3 automated enumeration of circulating tumor cells

The recorded images from the patient samples were copied to central
hard drives and analyzed by an algorithm developed in Matlab 2009a,
using the DIPimage toolbox (Delft University of Technology, Delft, The
Netherlands). After loading the 144–180 images per patient, objects in the
CK-PE channel are selected by dynamic thresholding and their outline is
saved [44]. Next, the outline of each object is used to perform measurements
in the DNA-DAPI, CK-PE, and CD45-APC channels. Finally, an algorithm,
optimized using survival data from metastatic prostate cancer patients,
selects automated CTC (aCTC). Details of the algorithm are described in
more detail elsewhere [34]. The original inclusion criteria for an aCTC were
a CK-PE standard deviation higher than 50 counts, a DNA-DAPI peak
value of at least 170 counts, a CD45-APC peak value less than 60 counts
and a size within 75–500 pixels (35–225 µm2). However, the upper aCTC
size limit was increased to 2000 pixels (∼900 µm2) after the observation that
aCTC sizes in metastatic breast cancer are larger [45]. For every patient
sample, the included objects were summed to arrive at a final aCTC count
per patient. To compare the overall aCTC and mCTC enumeration, a
frequency plot was created using the data from the three patient groups,
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benign tumors and healthy controls.

6.2.4 additional morphological measurements on actc

We performed a number of measurements on the aCTC, including cell
roundness, nuclear to cytokeratin (NCK) ratio, the presence of cell clusters,
and the number of speckles within the cytoplasm. Cell roundness was
defined as the ratio of the signal perimeter squared to the signal area
times 4π (termed P2A in the literature). Thus, roundness equals one for a
perfect circle. The NCK-ratio was defined as the area of the DNA-DAPI
signal, divided by the area of the CK-PE signal. For this parameter, an
extra segmentation step for DNA-DAPI was performed to find DNA-DAPI+
objects larger than 10 µm2 (22 pixels, the smallest DNA-DAPI nucleus area).
If multiple DNA-DAPI+ objects were found close to the CK signal, the
center-of-mass distances between the CK and DNA signals were determined.
The object with (partial) overlap between CK and DNA and the smallest
distance (no more than 17 µm, or half the size limit as set by the algorithm)
was selected to determine the NCK-ratio. Clusters of cells were defined
as the number of DNA-DAPI objects larger than 10 µm2 and located
within each CK-PE signal. Finally, speckles within the CK-PE signals
are indicative of damaged or apoptotic CTC [46]. The number of dot-like
structures within the CK-PE signal was counted and used as a measure
of apoptosis. Dot-like structures were counted by an algorithm developed
for the detection of fluorescence in situ hybridization probes within a cell
nucleus [47].

6.2.5 identification and morphological measurements of
leukocytes

Due to a-specific binding of EpCAM-ferrofluid particles during the CTC
enrichment, leukocytes are carried over and are present at the analysis
surface of the sample cartridge. Leukocytes are identified by their DAPI
staining, expression of CD45 and lack of cytokeratin expression. The outline
of the leukocytes was determined in the CD45-APC channel, using the
triangle threshold method [44]. Leukocytes were defined as objects that
had CK-PE peak value lower than 100 counts, DNA-DAPI peak value of at
least 100 counts, CD45-APC peak value of at least 100 counts and a size
range between 50 and 2000 pixels (21-900 µm2). Morphological parameters
were extracted as described for aCTC.

6.2.6 statistical analysis

SPSS 16 (IBM, New York, USA) was used for survival analysis. Least-
squares linear regression analysis was performed to compare aCTC and
mCTC, baseline and follow-up samples, and to compare different studies
of the same type of cancer. Kaplan-Meier analysis was performed by
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Figure 6.1 : Scatter plot of frequencies of mCTC and aCTC found in healthy controls,
patients with benign disease and patients with metastatic breast, colorectal, and prostate
cancer before initiation of a new line of therapy. The dots in the scatter plot are spread
for viewing purposes. The 25th, 50th, and 75th percentiles are given by the black markers
and in numerical values in the right part of the figure. At the start of each row, the
percentage and number of patients that have 0 CTC are shown.

dichotomizing the patient population on the clinically used cut-off value
of five CTC for breast and prostate cancer, and three CTC for colorectal
cancer. Next to these cut-offs, other cut-off values of 1, 10, and 100 for
aCTC or mCTC were tested to dichotomize the patient population per
study for univariate Cox hazard regression. Log-rank tests were used
to compare survival between groups. Cox hazard ratios (HR) with 95%
confidence intervals (CI) were determined and collected in a table. Survival
was defined as the time between baseline sample and death from any cause.

To determine whether the morphological parameters determined on
aCTC provide additional information that is relevant for prognosis, multi-
variate Cox proportional hazards regression was performed (forward condi-
tional, with pin 0.10 and pout 0.20), controlling for cancer type (colorectal,
prostate, breast), with all morphological parameters and the aCTC count
as continuous variables. The number of aCTC was 10log transformed before
inclusion in the regression [48, 49]. Because the morphological parameters
could not be determined on patients without aCTC, only patients with at
least 1 aCTC were included. For parameters that are determined for each
individual aCTC, the median value within a patient was used since this
represents the predominant characteristic.

The nonparametric Mann-Whitney U-test was used to compare morpho-
logical parameters of different types of cancer. The t-test could not be used
because the parameters are not normally distributed.
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Figure 6.2 : Scatter plot of the number of aCTC versus mCTC for every study.
Horizontal and vertical dashed lines were drawn to show clinically used cut-offs, which
are ≥5 for breast and prostate, and ≥3 for colorectal cancer. At the top of each graph,
the linear regression coefficients are shown.

6.3 Results

6.3.1 frequency of actc versus mctc

aCTC and mCTC were enumerated in healthy controls, patients with benign
disease and patients with metastatic colorectal, prostate and breast cancer
before initiation of therapy. The frequency distribution of the CTC is shown
in figure 6.1 and the 25th, 50th, and 75th percentiles are provided at the
right hand side of the figure. Figure 6.2 shows the scatter plot of aCTC
versus mCTC per study, as well as the linear regression coefficients.

In summary, breast CTC counts ranged from 0–10111 aCTC (median 2/0
for baseline/follow-up) and 0–23618 mCTC (median 3/0 for baseline/follow-
up); colorectal aCTC counts from 0–448 (median 1/0) and 0–351 mCTC
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Table 6.2 : Measurements on aCTC and leukocytes for baseline and follow-
up samples. Shown are mean and standard deviation.

Time point Breast Colorectal Prostate Leukocytes

Size (µm2) BLa µc 290 186 180 71
σd 200 153 145 44

FU1b 220 209 174 66
142 192 141 47

NCK-ratioe BL 0.8 1.0 1.0 N/Ag

2.8 3.5 2.1
FU1 0.5 1.1 1.3 N/A

2.0 4.9 4.3

Roundnessg BL 1.5 1.5 1.5 1.8
0.6 1.4 0.9 1.2

FU1 1.1 1.3 1.3 1.4
0.7 1.6 0.9 1.1

a Baseline measurement, b first follow-up, c mean, d standard deviation,
e nuclear-cytokeratin ratio, 1 indicates area of cytokeratin equal to area of
nucleus, f not applicable, g 1 indicates perfectly round.

(median 0/0); prostate CTC counts ranged from 0–4970 aCTC (median
7/3) and 0–5925 mCTC (median 7/2). Benign patients ranged from 0–218
(median 0) aCTC and 0–12 mCTC (median 0). Finally, healthy controls
had up to 1 aCTC and mCTC (both medians 0). Correlation R2 between
mCTC and aCTC was 0.48 for 725 breast samples, 0.84 for 1729 colorectal
samples, and 0.68 for 559 prostate samples.

6.3.2 measurements of morphological parameters of actc

Recording of the outline of aCTC permits the extraction and quantification
of morphological parameters from the identified aCTC. The distribution
of the size, NCK-ratio and roundness of aCTC in blood of patients with
metastatic breast, colorectal, and prostate cancer before initiation of therapy
and at first follow up after initiation of therapy is shown in figure 6.3. The
aCTC size distribution is given in µm2 and is illustrated above panels A,
B and C that show the results for colorectal, breast and prostate cancer
respectively. The NCK-ratio of the aCTC ranged from 0.5 to 5, examples
that show the range of these values are illustrated above panels E, F and
G, for breast, colorectal, and prostate cancer respectively. aCTC appear
in a large range of shapes. To illustrate this diversity in CTC shape, a
measure of roundness ranging from 1 to 5 is shown in panels H, I, and
J, and illustrated above these panels, for colorectal, breast and prostate
cancer, respectively.

Below the aCTC measures, the size and roundness properties of leuko-
cytes are shown in figure 6.3, panels D and K. The NCK-ratio for leukocytes
is not shown as leukocytes do not express cytokeratin. R2 correlation be-
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Figure 6.3 : Histograms of morphological parameters of aCTC for breast (panel A, E,
H), colorectal (panel B, F, I) and prostate samples (panel C, G, J), next to morphological
parameters of leukocytes (panel D, K). Baseline samples (black bars) are shown next to
first follow-up samples (white bars). Coefficients of determination of a linear regression
between the time points are shown next to the bars. Examples of morphological parameter
values of aCTC are given at the top of the figure, as well as examples of the outlines
after segmentation. The objects seem smaller in the images than in the outlines. This
is due to scaling of the image for print, the outlines show the area of the object that is
distinguishable from noise, and thus represents the true size of the object. The 5 µm
scale bar applies to all images if not stated differently. N/A: not applicable.
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Table 6.3 : Cluster and speckled aCTC measurements on baseline and follow-up samples
that had ≥5 aCTC from breast, colorectal and prostate cancer patients. aCTC were
considered clustered if they had more than one DNA-DAPI object within their CK-PE
outline, and speckled if they had more than two dot-like structures in their CK-PE outline.

Clusters - mean % (median %) Speckled - mean % (median %)
Patients ≥5 aCTC BLa FU1b BL FU1

Breast (N=111) 3.8 (2.2) 3.2 (0.0) 3.5 (2.1) 5.5 (2.9)
Colorectal (N=100) 5.2 (0.0) 8.6 (0.0) 3.2 (0.0) 6.0 (0.0)
Prostate (N=49) 5.1 (2.9) 4.7 (3.5) 3.4 (2.1) 3.3 (0.9)
Leukocytes (N=20) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

a Baseline measurement, b first follow-up measurement.

tween measurements before and after initiation of therapy is provided in
each panel. aCTC morphological parameters were quantified by mean and
standard deviation and are provided in table 6.2. For inter-study compari-
son, morphological parameters from the respective studies were compared
and plotted in figure 6.4 and their R2 correlation is given in every graph.

To test whether the morphological parameters from table 6.2 were
significantly different between cancer types, Mann-Whitney U-test p-values
were derived using all samples of each type of cancer. Derived p-values for
median size of aCTC between colorectal and prostate was 0.90 and 0.35 for
median NCK-ratio between breast and colorectal. The percentage apoptotic
cells between breast and prostate had p=0.18. For median roundness of
aCTC p-values were 0.27, 0.008, and 0.15 for comparison between breast-
colorectal, breast-prostate, and colorectal-prostate, respectively. For all
other morphological parameters from table 6.2 p was <0.001 between all
types of cancer.

The size of the objects can be influenced by the presence of multiple
CTC representing CTC-clusters. These clusters are counted as one CTC in
both the manual identification as well as the automated identification of
CTC. The presence of aCTC clusters was estimated by the number of nuclei
that could be detected within the CK-PE area. Percentages of clustered
cells per patient are shown in table 6.3 for patients with ≥5 aCTC for both
baseline and follow-up samples. None of the patients showed a significant
rise or drop (outside 95% CI) in the number of clusters after initiation of
therapy.

The presence of speckles of cytokeratin is associated with CTC undergo-
ing apoptosis. A measure of the cytokeratin distribution was determined
to capture this phenomenon and the percentages of cells having 3 or more
dot-like structures in their cytokeratin signal is shown in table 6.3 for both
baseline and follow-up samples. None of the patients had a significant rise or
drop in the number of speckled objects between baseline and first follow-up
measurement.
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Figure 6.4 : Histograms of morphological parameters of aCTC for breast (panel A, D,
G), colorectal (panel B, E, H) and prostate samples (panel C, F, I) per study. Coefficient
of determination of a linear regression between studies is shown next to the bars.

6.3.3 mctc, actc and morphological parameters versus
survival in metastatic breast, colorectal and prostate
cancer

To illustrate the relationship between survival and CTC, Kaplan-Meier
plots were generated dividing the patients in favorable and unfavorable
groups based on a threshold of 3 CTC for metastatic colorectal cancer and
5 CTC for metastatic prostate and breast cancer. The Kaplan-Meier plots
shown in figure 6.5 are for aCTC and mCTC before initiation of therapy
(panels A, C, E) and at first follow-up after initiation of therapy (panels
B, C, F). The relationship between aCTC number and overall survival in
metastatic breast, colorectal, and prostate cancer is shown in table 6.4.
All p-values were <0.001, except for breast cancer samples using a cut-off
of ≥1 for baseline samples (p=0.018) and follow-up samples (p=0.003).
To investigate the impact of aCTC morphological parameters on survival,
univariate and multivariate analysis was performed using the measured
morphological parameters as covariates next to the number of aCTC or
mCTC. HRs were calculated for each covariate as a continuous variable.
Table 6.5A shows the HRs, derived p-values, and Chi-squared.
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Table 6.4 : Correlation of CTC numbers with overall survival in metastatic colorectal,
breast, and prostate cancer

aCTC mCTC

cut-off n
at risk

%
at risk

HRa (95% CIb) n
at risk

%
at risk

HR (95% CI)

Breast baseline measurement
≥1 270 66 1.5 (1.1–2.2) 279 68 2.8 (1.8–4.2)
≥5 160 39 2.3 (1.7–3.3) 194 47 3.0 (2.1–4.2)
≥10 120 29 2.5 (1.8–3.5) 151 37 3.1 (2.2–4.3)
≥100 43 10 2.3 (1.4–3.6) 54 13 2.7 (1.8–4.1)
Breast first follow-up measurement
≥1 151 48 1.8 (1.2–2.6) 139 44 3.3 (2.2–5.0)
≥5 56 18 3.7 (2.5–5.7) 74 24 4.2 (2.9–6.3)
≥10 40 13 3.7 (2.3–5.9) 55 18 3.9 (2.6–5.9)
≥100 6 2 8.3 (3.0–23.5) 14 4 4.1 (2.1–7.7)

Colorectal baseline measurement
≥1 565 64 1.7 (1.4–2.0) 437 49 1.8 (1.5–2.1)
≥3 322 36 1.7 (1.5–2.0) 249 28 1.9 (1.6–2.2)
≥10 139 16 1.9 (1.6–2.3) 114 13 2.3 (1.8–2.8)
≥100 13 1 3.9 (2.2–6.9) 11 1 6.1 (3.3–11.3)
Colorectal first follow-up measurement
≥1 340 40 1.5 (1.2–1.7) 172 20 2.1 (1.8–2.6)
≥3 108 13 2.0 (1.6–2.5) 70 8 3.8 (2.7–4.7)
≥10 27 3 4.6 (3.0–6.9) 19 2 13.3 (8.1–21.7)
≥100 4 0 24.1 (8.5–68.3) 4 0 24.1 (8.5–68.3)

Prostate baseline measurement
≥1 231 83 2.9 (1.8–4.6) 205 74 2.7 (1.9–3.9)
≥5 156 56 3.4 (2.5–4.8) 153 55 3.1 (2.3–4.3)
≥10 123 44 3.0 (2.2–4.0) 118 42 3.3 (2.4–4.5)
≥100 35 13 3.7 (2.5–5.6) 31 11 5.5 (3.5–8.4)
Prostate first follow-up measurement
≥1 207 74 2.3 (1.6–3.4) 165 59 3.9 (2.8–5.5)
≥5 113 40 4.1 (3.0–5.5) 108 38 4.2 (3.1–5.8)
≥10 95 34 3.9 (2.8–5.3) 83 30 4.5 (3.3–6.2)
≥100 29 10 5.2 (3.4–8.1) 23 8 4.0 (2.4–6.6)

a Cox hazard ratio, b confidence interval.
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Figure 6.5 : Kaplan-Meier plots of baseline and first follow-up samples of the metastatic
breast (panel A and B), colorectal (panel C and D), and prostate cancer patients (panel
E and F) with favorable and unfavorable mCTC (black lines) and aCTC definition (grey
lines). For every type of cancer, patients were pooled from the two studies of each type
as shown in table 6.1.
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Next, all variables of aCTC were entered in a multivariate Cox regression
analysis. mCTC were left out of this analysis, as quantitative parameters are
unknown of these cells. Hazard models were calculated using all first follow-
up samples for all cancer types together and for each type separately. When
all samples were combined, we controlled for cancer type to compensate for
general differences in survival. Results are shown in table 6.5B. The optimal
model used the number of aCTC, their median roundness per patient and
had a Chi-square of 181 with 3 degrees of freedom. The model shows that
more objects impose a bigger threat and that objects with a roundness
close to one are more dangerous for patients than objects that are for
instance elongated. When including only samples from one type of cancer,
the median size of the aCTC, and the median NCK-ratio of aCTC had a
significant influence on survival in breast cancer samples. HRs smaller than
one show that in breast cancer small objects represent greater hazard than
large objects. Furthermore, objects with small DAPI signals with respect
to their CK signal, i.e. a low NCK-ratio, are more dangerous for patients
than cells with high NCK-ratio. Other morphological parameters did not
improve the multivariate models.

6.4 Discussion

Recently, we showed that counting CTC by an automated algorithm is
preferable to manual counting by a trained reviewer [34]. Our aCTC
algorithm performed similar to the human reviewer in terms of prognostic
value: similar HRs were found. Additionally, our algorithm performed
this task much faster and had 0% variability, against an inter-laboratory
variability of 4% to 31% for mCTC (median 14%) reported previously
by another group [32]. The aCTC algorithm was trained using samples
from prostate cancer patients in the IMMC-38 study and validated on an
independent data set of prostate cancer patients that were included in the
Abiraterone phase I/II trials [11, 39]. The aCTC algorithm with the highest
prognostic value includes objects that contain DNA and CK, rejects CD45
and have a size between 34 µm2 and 224 µm2.

Here we applied the aCTC algorithm on samples of patients with benign
and malignant breast and colorectal cancer, as well as on samples of healthy
controls. The upper size limit was increased from 224 µm2 to 900 µm2,
concordant with a recent study showing a larger size of CTC in breast
cancer [45]. This change resulted in an aCTC increase by a factor of 1.3
for prostate cancer with less than 15% effect on the HR. The increase in
the number of aCTC was a factor 1.4 for colorectal samples and 1.9 for
breast cancer samples, and thus indicative for the larger average size of CTC
in breast cancer. The frequency distribution of CTC shown in figure 6.1
shows that the aCTC and mCTC counts do not differ greatly. Separation
of the results into the different studies however showed a clear discrepancy
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Table 6.5 : Univariate (panel A) and multivariate (panel B) analysis of
variables on follow-up samples. Univariate analysis was performed using
all samples, the multivariate analysis on all samples and for each type of
cancer separately. The aCTC and mCTC numbers were 10log transformed
for improved linearity. Mean and standard deviation of the variable is given
for HR interpretation. A HR < 1 shows that smaller values of a variable are
more dangerous than larger values of that variable. Chi-square is given for
comparison of the whole variable or model with the null-hypothesis, degrees
of freedom is equal to the number of variables shown.

A: Univariate Analysis
Variable mean±SDa HRb p Chi-square
10log(aCTCc) 0.7±0.8 1.7 <0.001 178
10log(mCTCd ) 0.9±0.8 1.5 <0.001 203
median size (µm2) 167±127 0.98 0.002 9
% speckled 5.9±17.5 0.996 0.02 6
median NCK-Ratioe 0.6±1.4 0.97 0.3 1
median roundness 1.5±1.1 0.86 0.001 10
% clusters 6.3±17.5 0.998 0.1 2
B: Multivariate Analysis
All first follow-up samples
10log(aCTC) 2.5 <0.001 180
median roundness 0.9 0.040
ColorectalControlf 1.8 <0.001

Breast first follow-up samples
10log(aCTC) 2.9 <0.001 36
median size 0.92 0.018
median NCK-Ratio 0.5 0.026

Colorectal first follow-up samples
10log(aCTC) 2.7 <0.001 50

Prostate first follow-up samples
10log(aCTC) 2.6 <0.001 42

a Standard deviation, b Cox hazard ratio, c automated circulating tumor
cells, d manual circulating tumor cells, e nuclear-to-cytokeratin ratio, f 1 if
a samples is from a colorectal cancer patient, otherwise 0.

between the counts obtained with samples from the IMMC-01 breast cancer
study as compared to all other studies (figure 6.2B). This also resulted in a
lower prognostic value of aCTC as shown in figure 6.5A and B, were all the
metastatic breast patients were pooled.

The cause of this discrepancy was traced back to the CD45 staining of
objects as the CD45 staining in the IMMC-01 study was much higher as
compared to the IC2006-04 study. This resulted in the rejection by the
algorithm of many objects in the IMMC-01 study. Lowering of the CD45
threshold eliminated the discrepancy between the number of aCTC in the
IMMC-01 and other studies (data not shown). Potential causes for the higher
CD45 signal are a higher concentration of the CD45-APC fluorochrome,
differences in sample preparation or difference in filter cubes giving rise
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to more crosstalk of PE signal into the APC channel. Most samples of
IMMC-01, 06 and 38 were scanned on the CellSpotter Analyzer instead of
the CellTracks Analyzer II used for the other studies, therefore differences
between CellTracks and CellSpotter do not offer an explanation for the
differences in CD45 signal. The IMMC-01 study was the first large clinical
trial run with the CellSearch system, and during this study samples were not
automatically processed by the CellSearch Autoprep system. Kaplan-Meier
analysis on the IC2006-04 study alone showed that the aCTC and mCTC
had the same prognostic value. Therefore, future breast cancer samples,
processed using current CellSearch equipment, can be accurately analyzed
with our algorithm.

Counts of both aCTC and mCTC in samples from colorectal patients
showed very low numbers. We did not find mCTC in 65% of samples and
in 48% of the samples, no aCTC were found. In table 6.2 and figure 6.4
it is evident that in the baseline samples the algorithm performs good.
The follow-up samples from CAIRO-2 showed that the algorithm counted
more aCTC than the operators counted mCTC, but this did not improve
the aCTC prognostic value as can be seen in figure 6.5B. The algorithm
identified 9 more patients as being unfavorable, but this did not improve
the HR and Kaplan-Meier survival estimates: HRs were 1.7/2.0 for aCTC
baseline/follow-up samples and 1.9/3.8 for mCTC by stratifying the patient
group on the clinically used cut-off of 3 CTC. Prostate samples that were
analyzed with our algorithm showed equal prognostic value compare to
mCTC: HRs were 3.4/4.1 for aCTC and 3.1/4.2 (cut-off 5 CTC). This was
to be expected: the algorithm was trained on these samples and only the
upper size limit of aCTC was changed since. However, it is important to
notice that this change in the algorithm did not have a significant impact
on our initial training set (IMMC-38) and validation set (Abiraterone).

The benign aCTC frequencies were similar to mCTC frequencies, as
were the numbers found in control samples. The control samples did not
contain more than one aCTC or mCTC, showing that these definitions
have very few false positives. It was derived using the aCTC average from
the distribution of the control samples that 2 aCTC are expected for 1 in
1750 control samples. Interestingly, benign patients had more aCTC than
healthy controls, indicating that in a few of these patients the primary
tumor is shedding some cells into the blood. Whether or not these cells
are dangerous is currently unclear; it seems plausible that some of these
patients were incorrectly diagnosed as being benign and that these aCTC
numbers show evidence of progressive disease.

Comparison of aCTC morphological parameters between cancer types
shows a larger size, a relatively large nucleus to the cytokeratin size and
rounder CTC in breast cancer as compared to prostate and colorectal cancer.
The distribution of the size of aCTC is exponential in CTC of both prostate
and colorectal cancer which is cut off at the lower end by the CTC algorithm,
in contrast with leukocytes that display a more bell-shaped size distribution.



ThesisSjoerd_v1 April 16, 2012 23:05 Page 113 �
�	

�
�	 �
�	

�
�	

113

C
H

A
P
T

E
R

6.
M

O
R

P
H

O
L
O

G
Y

O
F

C
T

C
These distributions shows that a wide range of CTC and CTC fragments
are present in the blood of patients, as was reported earlier [46]. It was
found in earlier work that the number of tumor micro particles (TMPs) is
also prognostic for survival, it is therefore interesting to include these TMPs
in the analysis, as they are present in abundant numbers [31]. Especially
in colorectal cancer, TMPs might reduce the large Poisson error that is
currently present by using a clinical cut-off value of three mCTC.

Clusters and speckled cells were found among aCTC, but not among
leukocytes. A few exceptional colorectal samples contained a large number
of apoptotic cells and clusters, but the presence of these cells or clusters had
no detectable impact on survival. Breast cancer aCTC showed the highest
number of speckled cells, while prostate cancer aCTC had more clusters,
although the differences between cancer types are small. No significant rise
or drop in the number of clusters or apoptotic cells was found between
baseline and follow-up samples in any patient.

We performed continuous univariate and multivariate survival analysis
to investigate the influence of aCTC and its morphological parameters on
survival. Median roundness was significant (p<0.05) when we included
all cancer types in the multivariate analysis, with rounder cells predicting
poorer survival. When we performed multivariate analysis by cancer type,
small cells with small nuclei compared to the cytokeratin were significantly
(p<0.05) associated with poor survival only for breast cancer samples.
Currently, we have no biological explanation for this phenomenon. However,
research focused on separating normal blood cells from CTC on the basis
of size should consider this observation.

In conclusion, we have validated a CTC automated algorithm, which was
trained on prostate cancer samples, on other types of cancer samples and
samples from benign patients and healthy controls. We show that differences
exist in physical characteristics between CTC from different origin, although
their impact on survival is limited. Our algorithm gives reasonable results
in all cancer types, but it could be re-trained for colorectal cancer samples
to include more objects. We have recently determined that all metastatic
patients have CTC [49]. Hence, it is also critical for improving prognostic
and predictive value of CTC that larger volumes of blood are analyzed,
using for example leukapheresis techniques [50].
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CHAPTER 7
Interpretation of changes in

circulating tumor cell
counts1

Sjoerd T. Ligthart, Frank A.W. Coumans, and Leon W.M.M. Terstappen

Abstract

Background: The presence of circulating tumor cells (CTC) in the blood
of cancer patients may guide the use of therapy. We investigated how to
evaluate a reduction in the number of CTC after administration of therapy
by using different definitions of CTC. Methodology: CTC were enumerated
with the CellSearchR© system in 111 metastatic breast and 185 metastatic
prostate cancer patients before start of a new line of chemotherapy and after
initiation of therapy. CTC were enumerated by manual review and by an
automated algorithm using four selection criteria. Different means to express
changes in CTC counts were evaluated with respect to progression free (PFS)
and overall survival (OS): by applying a static cut-off, absolute reduction,
relative reduction, and a Poisson model. Results: It was determined that
a static CTC cut-off is the best method to determine whether a therapy is
effective. This is exemplified by the highest Cox hazard ratios for OS of
2.1–3.0 and for PFS of 2.0–2.9 for all CTC definitions; three methods to
express relative differences performed worse. We furthermore show that a
very strict CTC definition is the most useful because of low background in
healthy controls. A look-up table is provided from which the significance of
a change in CTC can be derived. Conclusion: Results show that the aim of
therapy should be the elimination of all CTC, and that elimination of CTC
in 10–12 weeks after therapy initiation is early evidence of therapy success.

1Submitted.
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7.1 Introduction

Circulating tumor cells (CTC) leave the tumor site(s), invade the blood
stream, and may give rise to distant metastases. The presence of CTC has
been associated with poor survival in melanoma, breast, colorectal, prostate,
gastric, and non-small cell lung cancer [1, 2, 3, 4, 5, 6]. The association
between the presence of CTC and poor prognosis holds true before and at
various time intervals after initiation of therapy [3, 4, 7]. Transition of the
number of CTC in a patient from unfavorable (≥5 CTC/7.5 ml of blood)
to favorable (<5 CTC/7.5 ml of blood) improves survival and as such can
be used as a predictive factor for treatment response [2, 3, 4, 7]. This
transition can already be measured after the first cycle of therapy, which is
considerably earlier compared to treatment response measured by imaging.
Moreover, conversion to favorable or unfavorable CTC may be a better
indicator of therapy response as compared to imaging [3, 8, 9]. Although
conversion to no detectable CTC is most likely the best outcome, the time
needed to assure whether or not this target could be reached under the
current treatment regimen is unknown. Accurate measurement of a decline
in CTC is impeded by the low frequency of CTC in most patients with
metastatic disease [10]. Not only the continuous relationship between CTC
concentration and survival but also the Poisson sampling error suggests
that dichotomization may not be the best approach to detect effective
chemotherapy [11, 12, 13].

The goal of this study was to investigate how to optimally define a true
decrease in the number of CTC and to determine whether less strict defini-
tions of CTC could aid in the assessment of a CTC reduction. To address
these questions we estimated the prognostic power of various methods to
define a reduction in the number of CTC.

7.2 Materials and methods

7.2.1 patient data

For this study we used stored images of CTC measurements from patients
before initiation of a new cycle of cytotoxic chemotherapy (baseline) and
at several follow-up time-points in a thirteen week period after initiation
of therapy. Samples from patients enrolled into the IMMC-01 metastatic
breast cancer [2] and IMMC-38 metastatic prostate cancer [4] studies were
used. This study included 111 baseline samples and 265 follow up samples
from 111 metastatic breast cancer and 185 baseline and 425 follow-up
samples from 185 metastatic prostate cancer patients. 205 samples from
healthy controls were available [10, 14]. All patients and healthy controls
provided written informed consent. The institutional review boards at each
participating center approved the respective study protocols. Table 7.1
shows a summary of patient characteristics.
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Table 7.1 : Patient characteristics. Numerical data are shown as median (min-max) or
% of total N. The sample size N is given in parentheses if different from the total N.

Breast Prostate

N 111 185
Age 58 (27-86) 69 (49-92)
OSaof Pxb 16.1 (1.5-48.6) 16.9 (1.9-38.7)
PFSc of Px 5.5 (0.7-45.2) 5.0 (0.6-34.5)
Follow-up of censored Px 20.7 (5.5-48.6, N=47) 25.9 (2.4-38.9, N=67)
Types of Txd (1/2/3)e 57.8%/5.5%/36.7% 8.2%/91.8%/0%
Tx line (1/2/3+) 43.2%/15.3%/41.5% 67.0%/16.2%/16.8%
Bone mets (yes/no) 90.6%/9.4% 87.4%/12.6%
PSAg (ng/ml) N/Af 128 (1.9-17800)
LDHh (IU/ml) N/A 236 (4.7-2364, N=139)
ALPi (IU/ml) N/A 126 (3.29-1558, N=179)
Hemoglobin (g/dl) N/A 12.4 (8.2-15.7, N=182)
Albumin (g/dl) N/A 3.8 (2.1-41, N=179)
CA15.3j 169.5 (0.9-19315, N=22) N/A
CA27.29k 96 (9.9-23204, N=65) N/A
CEAl 8.2 (0.5-3920, N=38) N/A
mCTCm 6 (0-10194) 7 (0-5925)

a Overall survival, b patients, c progression free survival, d treatment, e Tx types:
1=chemo+other; 2=chemo, hormone+other; 3=hormone+other, f not applicable,
g prostate specific antigen, h lactate dehydrogenase, i alkaline phosphatase, j mucin 1
glycoprotein, k milk mucin antigen, l carcinoembryonic antigen, m manual CellSearch
circulating tumor cells.

7.2.2 ctc enumeration

The CellSearch R© system (Veridex LLC, Raritan, USA) was used for enumer-
ation of CTC. The system consists of a CellTracks Autoprep R© for sample
preparation and a CellTracks Analyzer II R© for sample analysis [10]. The
CellTracks Autoprep immuno-magnetically enriches epithelial cells from
7.5 ml of blood using ferrofluids conjugated to the epthelial cell adhesion
molecule (EpCAM). The enriched sample is stained with phycoerythrin-
conjugated (PE) antibodies directed against cytokeratins (CK) 8, 18 and 19,
an allophycocyanin-conjugated (APC) antibody to CD45 and the nuclear
dye 4’,6-diamidino-2-phenylindole (DAPI). The enriched sample (∼300 µl
in volume) is transferred to a cartridge placed in a CellTracks Magnest R©.
Inside the MagNest magnetically labeled objects are pulled towards the
imaging surface. The surface is imaged by the CellTracks Analyzer II which
records digital images for four different fluorescent dyes, using a 10×/0.45NA
objective. Per cartridge, 144–180 four-layer tiff images are recorded. To
arrive at a CTC count, objects that are CK+DAPI+ are selected by a
computer algorithm and presented in a gallery to a trained reviewer. The
reviewer manually scores events as CTC (mCTC) when the objects are
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Table 7.2 : Characteristics of the mCTC and aCTC definitions A through D used to
test different reduction criteria. Thresholds for each parameter were defined elsewhere
[15]. Size is shown as a diameter assuming a round cell. Log-rank p<0.0001 for all HRs

CTC Median count HRa

definition CKb DNA CD45 Size (µm) BLc FU1d BL FU1

mCTC + + - >4 7 1 2.6 3.8
aCTC A >50 >170 <60 6–16 2 1 2.3 3.0
aCTC B >80 >120 <160 3–30 10 5 3.2 3.7
aCTC C >40 >80 <180 2–30 22 13 3.0 3.4
aCTC D >20 any any 6–30 68 40 2.6 2.8

a Hazard ratio, b cytokeratins 8, 18, and 19, c baseline measurement, d first follow-up
measurement.

CD45 negative, larger than 4 µm and have a cell-like morphology.
For performing automated CTC (aCTC) enumeration, the same 144–180

tiff images are used as input to count aCTC by a fully automated algorithm
[15]. This algorithm selects potential aCTC by object segmentation in
the CK channel and measures various properties of the object. Next, the
algorithm applies criteria to arrive at a final aCTC count. For this study
four different definitions of aCTC were developed using overall survival
(OS) as training parameter. We defined a classifier as a combination of
selection criteria; by changing these criteria we can change the sensitivity and
specificity of the classifier. The characteristics of the four aCTC definitions
-together with the mCTC definition- used in this study are provided in table
7.2. These definitions were used to gauge whether one of these definitions
was particularly suited for assessment of a change in CTC number.

7.2.3 poisson model for reduction in ctc count

The tree major sources of variation in CTC counting are [12]: i) the Poisson
distribution of the number of CTC present in a randomly drawn sample;
ii) the variability in the enrichment efficiency, and iii) the intra- and inter-
reader variability. The latter source of error disappears when counting with
an automated algorithm. With 80±15% assay efficiency [12], the Poisson
error is dominant up to 44 CTC and only this error will be taken into
account. When taking a sample from a large blood volume with an average
concentration of λ objects/sample volume, the probability that when we
take a sample we have k objects in that sample is given by the Poisson
distribution:

P (X = k) =
e−λλk

k!
for k = 0, 1, 2, ... (7.1)

The probability that a pair of successive measurements represents a
reduction in the true mean number of CTC was determined in Matlab 2009a
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(Mathworks, Natick, MA). Briefly, for two measurements k1 and k2 the
probability was simulated that λ2 is smaller than λ1, as is represented in
equation 7.2:

P (λ2 < λ1) =

∫ ∞
0

(
P (X = k2)

∫ ∞
λ1≥λ2

P (X = k1) dλ1

)
dλ2 (7.2)

In which k1, λ1 represent the first and k2, λ2 the second CTC measure-
ment. This equation compares two distributions of underlying means λ that
were derived from two measured k’s. First, for the two k’s, the probability
is simulated that it originates from a certain mean λ, this distribution is
normalized to 1. Second, for every λ from k2 the probability is determined
that it is lower than the λ’s from k1. This total is summed to determine the
total probability that k2 came from a lower true mean than k1 . There are
an infinite number of λ’s were a CTC measurement could originate from,
in our simulation we chose a λ distribution with 0.01 CTC spacing. Using
equation 7.2, we can determine the confidence for a CTC reduction given
any pair of measurements. For each combination of baseline and follow-up
measurements ranging from 0–50, the confidence that a true reduction oc-
cured was calculated. For aCTC definitions with high background noise,
the range where the Poisson error is dominant is reduced.

7.2.4 ctc reduction criteria

Several criteria to express CTC reduction were tested for their ability to
predict favorable outcome. To allow use of the same patients for each
reduction criterion, only patients with ≥5 mCTC at baseline were used for
this analysis (N=164). The traditional CTC numbers and the four different
aCTC definitions were used in this comparison. Tested criteria were:

1. Conversion to favorable group (from ≥x to <x CTC): setting a static
cut-off.

2. Reduction confidence larger than x%: according to equation 2.

3. Measurement 2 is x smaller than measurement 1: setting a absolute
reduction cut-off.

4. Measurement 2 is x times smaller than measurement 1: setting a
proportional reduction cut-off.

The parameter x was determined for each reduction criterion and CTC
definition as described in statistical analysis.
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7.2.5 statistical analysis

The Cox proportional hazard ratio (HR) for each aCTC classifier was
determined by dichotomizing on the median of the number of aCTC found
at baseline. For reference, the HR for mCTC was also determined in the
same way. We did not apply the cut-off of 5 (which is clinically used for
mCTC) to the aCTC definitions, because this would distort the relative
size of favorable and unfavorable groups.

For each criterion, the HR was determined for OS unless otherwise
stated. A method which delivers a high HR, but distinguishes very few
metastatic patients is of no practical use. To determine how well different
criteria stratify patients into two groups, the relative size of the two groups
resulting from each criterion must be balanced. To achieve this, the x in
the criterion 1 through 4 was set such that the percentages of patients in
the favorable and unfavorable groups were similar to the clinically validated
mCTC cutoff in criterion 1. The percentage of patients who remained
unfavorable was found to be 59% using criterion 1 for x = 5 mCTC. Thus
for each of the mCTC and aCTC definitions from table 7.2, the variable x
was set for each criterion to approximate the unfavorable group at 59%.

OS was measured from the time of blood draw to time of death from
any cause. Patients were censored at last follow-up if progression or death
had not occurred. Survival curves were compared with the use of log-rank
testing. Progression free survival (PFS) was defined as the elapsed time
between the date of the blood draw and the date of progression by either
CT scans and/or clinical signs and symptoms or death.

7.3 Results

7.3.1 overall survival as a function of ctc number

mCTC were enumerated with the CellSearch system in 296 blood samples at
the first follow-up after initiation of a new line of therapy in 111 metastatic
breast and 185 metastatic prostate cancer patients. Patients were divided
into those with 0 mCTC/7.5 ml of whole blood (N=123, 42%), those between
1 and 4 mCTC (N=67, 23%), those between 5 and 24 mCTC (N=55, 19%)
and those with ≥25 mCTC (N=51, 17%).

Figure 7.1 shows the Kaplan-Meier plot of these 296 patients. Log-rank
p for a comparison between the survival curves of patients with 0 versus
1–4 mCTC was p=0.044, 1–4 mCTC versus 5–24 mCTC p=0.002, and 5–24
mCTC versus ≥25 mCTC p=0.003, all other p<0.0001.

7.3.2 changes in the number of ctc and overall survival

Metastatic breast and prostate cancer patients were separated into 164
(55%) patients with unfavorable mCTC (≥5 mCTC) and those 132 (45%)
with favorable mCTC (<5 mCTC) at baseline. To illustrate the relationship
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Figure 7.1 : Overall survival time of metastatic breast and prostate cancer patients
was calculated from the date of the first follow-up blood draw after initiation of a new line
of therapy. Kaplan-meier plots of the probability of overall survival for 123 patients with
<1 mCTC, 67 patients with 1–4 mCTC, 55 patients with 5–24 mCTC and 51 patients
with ≥25 mCTC is shown.

between changes in mCTC count and overall survival, patients were further
subdivided into groups that survived 1–6 months, 6–12 month, 12–24 month
and 24–36 months. From the 296 patients 690 blood samples were taken
in 4–6 week intervals after initiation of therapy. Smoothed spline fits were
used to show the relationship between the median number of mCTC and
time for the different survival groups.

Figure 7.2 shows the median number of mCTC as a function of time
for patients with unfavorable baseline mCTC in panel A and favorable
baseline mCTC in panel B. The patients that survived for only 1–6 months
showed a clear trend of increasing mCTC for both the patients groups
with unfavorable and with favorable baseline mCTC. In absolute terms,
the changes are less severe for patients with <5 mCTC at baseline. In
relative terms they are comparable: a 3–4 fold increase in mCTC over a
three month period. For patients surviving 6–12 months a trend of slight
mCTC decrease followed by an increase was observed for patients with
unfavorable baseline mCTC and a trend of steadily increasing numbers for
those with favorable baseline mCTC. For patients surviving 12–24 months
and 24–36 months a clear trend of decreasing mCTC was observed that
reached 0 mCTC after 10–12 weeks of therapy.
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Figure 7.2 : mCTC trends for patients that survived 1–6, 6–12, 12–24 and 24–36
months after initiation of therapy. mCTC trends were obtained by smoothed spline fits
to the number of follow-up mCTC at several time points. Panel A shows 164 baseline
and 369 follow-up samples from patients with unfavorable mCTC before initiation of
therapy and Panel B shows 132 baseline and 312 follow-up samples from patients with
favorable mCTC before initiation of therapy.

7.3.3 true ctc changes determined using a poisson model

Measurements on samples taken from a patient at successive time points
may show a decline in CTC. For low CTC number this decline may reflect
a true decline in the number of CTC in the patient’s blood, but it may also
be due to the Poisson sampling error. A look-up table shown in figure 7.3
was created that can be used as a reference to determine confidence for a
true CTC reduction in the range of 0–50 CTC.

For example, in case the baseline measurement is 7 CTC: detecting
0–1 CTC at follow-up provides a CTC reduction confidence of >95% (see
the lower arrow in figure 7.3), whereas for a CTC follow-up count of 5 to
9 this confidence reduces to 25–75%. A follow-up measurement of 10–14
CTC gives confidence of 5–25% and for a follow up count above 14 CTC
confidence of reduction is less than 5%, or 95% confidence of an increase
(see the upper arrow in figure 3). For larger CTC numbers at baseline and
follow-up, the relative width of the central confidence windows becomes
narrower, making it easier to detect a true change in the CTC number.
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Figure 7.3 : Look-up table for the probability of a true reduction in CTC count
between two measurements. A true reduction occurs when the true average present in a
patient at the time of the second measurement is lower than the true average at the time
of the first measurement.

7.3.4 relation between ctc definitions and clinical outcome

The look-up table in figure 7.3 illustrates that low CTC numbers result in
a large uncertainty when a change in the true average CTC number present
in a patient is determined. To evaluate whether it is possible to reduce
this uncertainty by applying less stringent definitions of CTC -resulting in
more reported CTC- aCTC were identified by a computer algorithm and
classified according to different criteria as shown in table 7.2. The table also
shows the median CTC count for each CTC definition at baseline and at
the first follow-up measurements and the resulting HR. All CTC definitions
resulted in a significant difference in survival of both groups (p<0.0001 for
all) and HRs ranged between 2.3 (95% CI 1.7–3.2) and 3.2 (95% CI 2.3–4.3)
at baseline and between 2.8 (95% CI 2.0–3.8) and 3.8 (95% CI 2.8–5.1) at
first follow-up.
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Table 7.3 : HRs using OS/PFS (% unfavorable patients) using different criteria for
CTC reduction for mCTC and aCTC definitions (N=164, all patients ≥5 mCTC at
baseline). Bold HRs had a logrank p<0.05 for both OS and PFS.

Static cut-off Reduction
confidence

Relative
Reduction

Absolute
Reduction

CTC
definition

FU1a<x >% certain FU1 <
BLb / x

FU1 < BL - x

mCTC 2.1/2.5 (59%) 0.8/0.7 (62%) 1.5/1.9 (59%) 0.7/0.8 (58%)
aCTC A 2.7/2.8 (49%) 1.0/1.1 (61%) 1.5/1.5 (60%) 0.9/0.8 (60%)
aCTC B 3.0/2.9 (58%) 1.0/1.0 (60%) 1.5/1.5 (58%) 0.8/0.9 (59%)
aCTC C 2.6/2.4 (59%) 1.0/1.0 (53%) 1.4/1.4 (57%) 0.8/0.8 (59%)
aCTC D 2.3/2.0 (60%) 1.5/1.5 (38%) 1.3/1.4 (61%) 0.9/1.1 (59%)

a First follow-up measurement, b baseline measurement.

7.3.5 correlation of reduction criteria with survival

Four different criteria for CTC reduction were evaluated together with
the different CTC definitions. We tested a static cut-off, a confidence
of reduction, a proportional reduction, and an absolute reduction. The
boundaries for each criterion when applied to the mCTC definition are
shown in figure 7.4. The figure shows the mCTC number at baseline
and first-follow-up of 164 of 296 (65%) patients with unfavorable mCTC at
baseline. For the standard mCTC definition the static cut-off for unfavorable
mCTC is 5 CTC, the 99.9% probability for mCTC reduction was based on
the Poisson model, the minimum relative reduction was set at five fold and
the minimum absolute reduction was set at 13 mCTC.

Using these specific values in each approach resulted in a dichotomization
that had 59% of the patients in the unfavorable group, thus the group sizes
remained constant. For illustration purposes, two arrows are shown in figure
7.4 to exemplify the implications of applying these criteria. Arrow 1 is a
patient that started with 11 mCTC, which reduced to 2 mCTC at first
follow-up. According to static mCTC cut-off and relative mCTC reduction
this patient has a favorable prognosis, but using the 99.9% mCTC reduction
confidence or the absolute mCTC decrease this patient has an unfavorable
prognosis. The opposite case is indicated by arrow 2, where a patient had
39 mCTC at baseline and 9 mCTC at first follow-up; static mCTC cut-off
and relative mCTC reduction give this patient an unfavorable prognosis but
99.9% mCTC reduction confidence and absolute mCTC decrease indicate a
favorable prognosis.

The HRs for OS and PFS for the different CTC definitions and methods
to express CTC changes for patients with unfavorable CTC at baseline (≥5
mCTC) are shown in table 7.3. The static cut-off predicted a significant
difference in OS and PFS for all definitions (p<0.001 for all HRs). The
aCTC definitions A and B gave the highest predictive power using the static
cut-off method, but 95% confidence intervals overlapped for all definitions
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Figure 7.4 : Conversion from unfavorable to favorable mCTC using the classic mCTC
definition of 164 metastatic breast and prostate cancer patients that had ≥5 mCTC at
baseline. Four different criteria of assessing a CTC reduction are indicated with different
lines. Arrows indicate patients described in more detail in the text. BL = number of
mCTC at baseline, FU1 = number of mCTC at first follow-up.

(data not shown). Using the confidence reduction method, only the aCTC D
definition was significant (p≤0.05) for OS/PFS (p=0.029/0.001), although
the group size could not match that of the mCTC definition. Applying the
relative model showed that only aCTC definitions A (p=0.046/0.035) and
B (p=0.045/0.040) predicted significant differences in OS/PFS, while the
absolute method did not predict a significant difference in survival for all
definitions (p>0.06 for all HRs). Confidence of reduction (with mCTC) was
at least 50% for 74% of patients, and at least 95% confidence for 56% of
patients.

7.3.6 applying criteria for mctc change to multiple time
points

In order to create clear-cut rules for deciding whether or not a certain
therapy is working, survival of the group of unfavorable patients at baseline
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Figure 7.5 : Kaplan-Meier plot of patients with ≥ 2 aCTC at baseline who were
monitored at two subsequent follow-up time points (N=137). Patients were grouped (see
also text) accordingly to a drop below a cut-off of 2 mCTC, 95% confidence of a rise, or
in between both. BL = baseline measurement; FU1 = first follow-up measurement; FU2
= second follow-up measurement.

was assessed for two subsequent follow-up measurements: the first between 2–
5 weeks and the second between 6–8 weeks after initiation of therapy. Figure
7.1 and 7.2 show that it is important to treat patients until the number of
CTC becomes zero. It was found that the number of mCTC and aCTC
in healthy controls ranged from 0–1 mCTC: one of 205 healthy controls
had one mCTC (0.5%), six controls had one aCTC (2.9%). Therefore, the
cut-off for deciding if a patient was unfavorable was set to ≥2 mCTC. This
reduction of the cut-off from five to two aCTC allowed for 137 patients to
be included in the analysis.

The Kaplan-Meier survival plot of this analysis is shown in figure 7.5, for
which the patients were divided into five groups: (1) patients who changed
to favorable (<2 mCTC) at first follow-up (green line in figure 7.5); (2)
patients who stayed unfavorable at first follow-up, but changed to favorable
at second follow-up (cyan line); (3) patients who stayed unfavorable at first
and second follow-up, but did not show a significant rise in the number of
mCTC (blue line); (4) patients who stayed unfavorable at first follow-up
without significant rise that change to a significant rise at second follow-up
(magenta line); (5) patients who showed a significant rise at first follow-up
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(red line). In these cases, a significant rise was defined from figure 7.2,
panel A: the unfavorable group with survival from 1–6 months showed a
relative rise of 50% (or factor 1.5 increase). This increase represents 95%
confidence of a true change as calculated by our model. For patients that
had lower than 20 mCTC, the factor of 1.5 does not give 95% confidence due
to the higher Poisson noise at these lower numbers: a rise from two to three
mCTC would then already be significant. For these patients, the look-up
table showed in figure 7.3 was used to determine if a rise was significant. If
two subsequent measurements are located in the bright or dark red part of
this look-up table, the rise was at least 95% confident. Median survival for
groups 1–5 was 20.4, 17.9, 10.1, 5.1, and 5.0, respectively. Log-rank ps for
comparison between the survival curves of patients of group 1 and group 2,
and between groups 4 and 5 were p>0.8; 2 and 3 had p=0.07. Comparison
of group 3 to group 5 (group 5 is closer to 3 than to group 4) resulted in
p=0.17.

7.4 Discussion

Evidence is increasing that CTC are an independent prognostic and predic-
tive biomarker for patients treated for metastatic carcinomas [2, 3, 4, 5, 6, 7,
8, 9, 16, 17, 18, 19, 20]. Whether an early switch of treatment based on per-
sistence of CTC after the first cycle of therapy can prolong survival is still
being investigated in ongoing clinical studies (SWOG 0500 - NCT00382018).
A difficulty that arises in applying the results of a CTC assay to evaluate
therapy response is the low number of CTC that are typically found in
patients. Using the CellSearch system -which has been validated clinically
for CTC enumeration- patients are divided into two groups: those with
favorable CTC (<5 CTC/7.5 ml of blood) and those with unfavorable CTC
(≥5 CTC/7.5 ml of blood). However, examination of patient survival as a
function of the number of CTC clearly shows a significant correlation be-
tween the CTC load and survival prospects as shown in figure 7.1 for breast
and prostate cancer patients. CTC of metastatic breast and prostate cancer
patients were combined for this analysis to illustrate that interpretation of
CTC results can be made regardless of origin of the disease or treatment.

Elimination of all CTC clearly is the most desired outcome, the time
needed for a CTC reduction may however vary (figure 7.2) and it is of
importance to have the proper tools to evaluate changes in CTC numbers.
Using Poisson statistics, a measure was given of the confidence that two
CTC measurements represent a true change in the underlying average
number of CTC found in patients. A look-up table (figure 7.3) was created
to assist physicians in determining whether or not a change in CTC is
significant. This look-up table shows that for 0–10 CTC, most possible
combinations of CTC at baseline and follow-up have confidence less than
95% for determining decrease or increase. At baseline, 57% of patients in
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prostate and 66% in breast have 0–10 mCTC. For 56% of patients in our
data set, the observed reduction is significant with at least 95% confidence.
However, this reduction does not result in an improvement of OS and PFS
unless the absolute number of mCTC is reduced below 5 and preferably
approaches 0. We attribute this inconseqential reduction to the cytotoxic
chemotherapy, which kills cells in most patients, but probably does not
target all malignant cells in those patients with brief survival. This also
suggests that when CTC are found after therapy was initiated, these CTC
may be resistant to the current therapy and might be characterized using
this knowledge.

In patients where the number of mCTC is reduced but survival does not
improve, therapy possibly affects only part of the metastases that give rise
to CTC, or alternative therapy is given at insufficient dose or frequency to
achieve a durable effect. This is reflected in the changes in CTC counts
for patients that survived 1–6, 6–12, 12–24 and 24–36 months in figure 7.2
panel A. The group with 6–12 month survival showed some decline of CTC
in response to therapy in the first five weeks after initiation of therapy, but
deteriorated at subsequent time points. This figure further shows that a
period of 10–12 weeks may be needed before definitive conclusions can be
drawn whether a count is going to zero. Figure 7.5 further confirms this
conclusion, in which patient samples of two time points were used. The
cut-off for unfavorable patients was lowered to 2 mCTC for this analysis,
as (i) we showed that we only found up to one mCTC in healthy controls
[10, 14], and (ii) to include the maximum number of patients of whom
multiple time points were available. It can be seen that patients who stay
unfavorable at first follow-up may improve at second follow-up, which is
reflected in their survival chances. Patients who have a rise in number of
mCTC with at least 95% confidence deteriorate rapidly.

The therapeutic regimen of the majority of these patients included
chemotherapy and the rate of CTC decline may be dependent on the type
of therapy. Figure 7.2, panel B shows that also for those patients with <5
mCTC at baseline a strong upward trend is an indicator for poor prognosis,
even though the majority of patients with 6–12 month survival have fewer
than the clinically used cutoff of 5 mCTC after 12 weeks. It is unknown
whether these patients have a subtype of cancer which sheds fewer mCTC
into the blood, or whether they rapidly deteriorated after the last follow-up
measurement.

To determine the best definition of a change in CTC count, several
reduction criteria were tested. Four criteria were used to measure a reduction
using modeled confidence of reduction, static, absolute and proportional
cut-offs. Next, using our automated classifiers [15], different definitions of
what constitutes an aCTC were applied, each having significant impact on
survival of patients as measured by HRs at baseline, shown in table 7.2.
The different definitions ranged from strict to loose, where the strictest
definition excluded most false positives and part of the true positives, while
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the most inclusive definition included most true positives and some false
positives. This allowed us to explore the hypothesis that using more objects
from a patient improves the ability to measure a reduction in aCTC count.
This hypothesis was generated after the observation that tumor micro
particles (EpCAM+CK+CD45-, <4 µm diameter), present at a 20 fold
higher frequency as compared to mCTC, are equally prognostic as the
CellSearch manually counted mCTC [21]. These different CTC definitions
were combined with different criteria to measure CTC reduction. For
patients who started with five or more mCTC, a count below a static cut-off
after 6 weeks of therapy remains the best indicator of treatment success for
all CTC definitions. Combined with figure 7.1, we can again conclude that
treatment should focus on getting the number of CTC to zero.

Table 7.3 shows that HRs were comparable for all definitions, indicating
that the reduction in Poisson sampling noise with looser CTC definitions
is roughly offset by an increase in background due to inclusion of more
false positives. The aCTC D definition encompasses tumor fragments; the
presence of similar particles in healthy controls however hampers their
use as a surrogate for detection of the presence of CTC. Reduction of
the background of aCTC D may improve the ability to use these tumor
fragments as a means to measure the presence of CTC. This however will
require alteration of the assay, such as addition of an extra fluorescent
marker, which may result in such reduction of the numbers that it defeats
the purpose. Improving the yield of CTC with the CellSearch will not
significantly increase the numbers as ∼80% of tumor cells spiked in blood
are already recovered by the system [10]. Chasing CTC phenotypes that
are currently not detected by the CellSearch system is likely to identify
subgroups of patients in whom no CTC are detected, but will not significantly
increase the number of CTC in patients, in whom few CTC are detected.
Moreover, clinical studies will have to be conducted to demonstrate the
prognostic and predictive value of CTC that do not express EpCAM and
cytokeratins 8, 18 or 19.

The approach that truly will reduce the Poisson error is to sample
a larger blood volume. Extrapolation of the CTC frequency in patients
with metastatic breast and colon cancer showed that by increasing the
blood volume to 5 liters CTC will be detected in all patients [13]. This
however can only be achieved through in-vivo measurements [22, 23] or
apheresis-based systems [24]. Using the current blood volume of 7.5 ml,
the automated aCTC A definition is the preferred method of measuring
if a patients CTC number approaches zero, because it eliminates reviewer
variability. When reviewers assess two subsequent measurements, their
variability in determining a change will propagate by the square root of the
sum of the variability of the individual measurements squared.

We conclude that (i) CTC are best measured by means of an automated
CTC count with a low background (aCTC A), (ii) aim of treatment should
be the eliminating of all CTC. (iii) while reduction to 0 CTC can be seen
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after 4–6 weeks, to reach this aim 10–12 weeks of therapy may be needed
for some patients, and (iv) if the number does not decrease within this time
span, treatment is not effective.
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CHAPTER 8
Unbiased quantitative

assessment of Her-2
expression of circulating

tumor cells in patients with
metastatic and

non-metastatic breast
cancer1

Sjoerd T. Ligthart, François-Clément Bidard, Charles Decraene, Thomas
Bachelot, Suzette Delaloge, Etienne Brain, Mario Campone, Patrice Viens,
Jean-Yves Pierga, and Leon W.M.M. Terstappen.

Abstract

Circulating tumor cells (CTC) can provide the basis for a real-time liquid
biopsy. Assessment of biomarkers such as Her-2 status of CTC detected in
breast cancer patients may guide the use of targeted therapies. However,
reported techniques are either observer-dependent and/or unfit for large
scale screening of patients. We report on unbiased quantification of Her-2
protein expression of CTC in 103 metastatic (M1) and 88 non-metastatic
(M0) breast cancer patients. Digital images recorded by the CellSearchR©

system were processed by an automated algorithm, which determined a Her-
2 positivity threshold in each sample using the Her-2-fluoroisothyocyanate

1Submitted.
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fluorescence of leukocytes within each sample as internal control. This
automated method distinguished Her-2 positive from Her-2 negative breast
cancer cell lines. Her-2 expression of CTC varied greatly between and within
patients, suggesting a possible mechanism of treatment resistance. However,
in M1 patients, a 75% threshold of Her-2 positive CTC in patients with ≥5
CTC showed a relatively low discrepancy rate between the primary tumor
and CTC Her-2 status. Applying this threshold, 2% (95%CI:[0-11%]) of
M1 patients with Her-2 negative primary tumors had Her-2 positive CTC
status and 29% (95%CI:[12-55%]) of M1 patients with Her-2 positive primary
tumors had Her-2 negative CTC status. Interestingly, no Her-2 discrepancy
was observed between CTC and primary tumor in M0 patients with ≥5
CTC, suggesting that Her-2 status shift could appear at metastatic relapse
or treatment resistance. These findings demonstrate the feasibility of real-
time quantitative and reproducible assessment of treatment targets on CTC,
opening a path towards personalized treatment.

8.1 Introduction

Treatment of metastatic breast cancer took a leap forwards with the intro-
duction of trastuzumab, which targets the human epidermal growth-factor-
receptor type 2 (Her-2) gene [1, 2]. Her-2 is amplified and over-expressed
in ∼15% of invasive breast cancers, and is usually assessed using immuno-
histochemistry and/or in situ hybridization on tissue obtained from the
primary tumor, following current guidelines [3]. At the metastatic stages of
this disease, Her-2 status is considered to be globally stable, but numerous
reports have shown discrepancies in the Her-2 status of patients between
the primary tumor and the following metastatic relapses [4, 5]. It is now
considered relevant to perform a tissue biopsy at a first metastatic relapse
to reassess the therapeutic targets expressed by the tumor. However, ob-
taining tissue biopsies from metastatic sites is not always feasible, and is
associated with discomfort and risk to the patient.

Detection and characterization of tumor cells, circulating in the blood
at the time of treatment, may resolve this issue. Several studies have now
established that the presence of circulating tumor cells (CTC) in metastatic
(M1) breast-cancer patients is associated with a poor outcome, and that
their perseverance after the first cycles of therapy indicate an even worse
prognosis [6, 7, 8, 9, 10]. Beyond the quantitative analysis of CTC in
blood, the second interest of CTC detection is that molecular targets can
be assessed on CTC [11, 12, 13, 14]. However, classification of CTC and
quantification of treatment targets, such as Her-2, for CTC can be subjective
as they are morphologically heterogeneous [15, 16].

At present, expression of Her-2 on CTC using the clinically validated
CellSearch R© system for CTC enumeration relies on visual inspection of auto-
scaled Her-2-fluorescein isothiocyanate (FITC) images from CTC [17, 18].
However, this method is poorly reproducible and the auto-scaled images can
mislead the human reviewer. To overcome these challenges, we automated
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the classification of CTC and the quantification of their Her-2-expression
levels.

8.2 Materials and methods

8.2.1 patients

Patients with M1 breast cancer were part of the multicenter prospective
IC 2006-04 study (NCT00898014). From 06/2007 to 09/2009, 267 patients
were included in the IC 2006-04 study [10]. In the first period of patient
recruitment, only patients with a known primary Her-2-positive status were
screened for Her-2 expression on CTC. However, starting from 04/2009,
all patients, irrespective of primary-tumor status, were screened. Among
the 267 patients included at baseline, 174 patients had ≥1 CTC detected
by manual review (mCTC) in 7.5 ml of blood; of these, 103 patients were
further screened for Her-2 expression on detected CTC and were part of
this analysis.

Patients with non metastatic (M0) breast cancer were part of two
multicenter prospective phase II sister studies assessing the neoadjuvant
treatment efficacy on inflammatory (T4dNxM0) breast cancer either Her-
2 negative (BEVERLY 01, NCT00820547) or positive (BEVERLY 02,
NCT00717405). From 12/2008 to 09/2010, 101 patients with Her-2-negative
inflammatory M0 breast cancer were included in the BEVERLY 01 study,
and the systematic screening of Her-2 expression on CTC at baseline started
in 12/2009 [19]. 38 patients were evaluable at baseline for both CTC
detection and Her-2 expression on CTC, and were part of this analysis.
From 10/2008 to 10/2009, 52 patients with Her-2-positive inflammatory M0
breast cancer were included in the BEVERLY 02 study; of these, 50 patients
were evaluable at baseline for both CTC detection and Her-2 expression on
CTC [20], and were part of this analysis. The IC 2006-04, BEVERLY 01
& 02 studies were approved by the national ethics board and all patients
provided written informed consent.

8.2.2 her-2 assessment of the primary tumor

Patients had the Her-2 status of their primary tumor determined using
immunohistochemistry, at each cancer center, according to the current
recommendations [3]. Her-2 intensity was scored as being null (0+), weak
(1+), intermediate (2+), or strong (3+). Tissues that were 0+ and 1+ were
considered as Her-2-negative, and 3+ as Her-2-positive. In doubtful cases
(2+), FISH was performed to determine Her-2-amplification status (Her-
2/CEP17 ratio >2.2) [3]. Her-2 status of the primary tumor was mandatory
in BEVERLY studies. In a few patients included in the IC 2006-04 study,
Her-2 status remained unknown due to lack of tumor material.
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8.2.3 manual ctc enumeration and her-2 assessment

The CellSearch system (Veridex LLC, Raritan, NJ) was used to enumerate
CTC [10, 21]. The system consists of a CellTracks Autoprep R© for sample
preparation, and a CellTracks Analyzer II R© for sample analysis. The
CellTracks Autoprep immuno-magnetically enriches epithelial cells from 7.5
ml of blood using ferrofluids conjugated to epithelial cell-adhesion molecule
antibodies (EpCAM). The enriched sample is stained with phycoerythrin-
conjugated (PE) antibodies C11 and A53-B/A2 directed against cytokeratins
(CK) 8, 18, and 19 respectively, an allophycocyanin-conjugated (APC)
antibody HI30 to CD45, and nuclear dye 4’,6-diamidino-2-phenylindole
(DAPI). FITC-conjugated antibody HER81 (Veridex LLC [11]) was added
to the staining cocktail to identify Her-2. The enriched and stained samples
were transferred to a cartridge, which was placed in between two magnets
that distributed the cells over the analysis surface. The cartridge was placed
in the CellTracks Analyzer II; this four-color semi-automated fluorescence
microscope captured and stored 8-bit digital images of the four different
fluorescent dyes. The microscope was equipped with a 10×/0.45NA objective
and a CCD camera, using 6.7×6.7 µm pixels.

To ascertain the number of CTC in a sample, objects that were positive
for DNA and CK were selected by the system and were shown, in a gallery, to
a trained reviewer. The reviewer marked DNA+, CK+, and CD45- objects
that were larger than 4×4 µm, and had a cell-like morphology, as manual
CTC (mCTC). A review of the thumbnails of the Her-2 staining of CTC
was used to assign the mCTC as either Her-2-negative or Her-2-positive.
This was done by visually comparing images obtained with spiked cell lines
of known Her-2 status, as already described by other groups [17, 18]. All
images from the samples were saved to a CD or DVD. Six breast cancer cell
lines were used: SKBR3, BT474, MDA-MB361, ZR75-1, BT20, and MCF7.
Early passage cells were used from these cell lines that were originally
obtained from the American Type Culture collection (Manassas, VA, USA).
105 cells of each cell lines were cytospun onto slides and immunostaining
was performed with the Her-2 specific antibody CB11 to confirm their Her-2
immunocytostaining. SKBR3, BT474, MDA-MB361, ZR75-1, BT20, and
MCF7 were scored as 3+, 3+, 2+, 1+, 0+ and 0+ respectively, by senior
cytologist Dr J. Klijanienko at the Institut Curie (images not shown). These
cell lines were spiked into blood from healthy donors for the Cellsearch
analysis.

8.2.4 automated ctc enumeration and her-2 assessment

The data from the CDs and DVDs that contained the archived images of the
191 samples were copied onto a central hard drive. Objects were detected
and classified using an automated algorithm developed in Matlab 2009a
(Mathworks, Natick, MA), using the DIPimage toolbox (Delft University
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of Technology, The Netherlands, http://www.diplib.org). This algorithm
was optimized using survival times from prostate-cancer patients: details
of this algorithm have been reported previously [22]. In short, 140–180
four-channel tiff images of a sample from each patient were uploaded onto
the computer. First, detection of the border of the sample cartridge was
performed via edge detection in the FITC images. The true imaging area,
where all the objects were located, could then be determined.

Next, a dynamic threshold was determined using the CK-PE channel-
image histogram of the selected imaging area. This threshold method
determines one threshold value for the whole cartridge. Applying this
threshold to the CK-PE images gave the outline, size, and location of
objects. In the next step, the standard deviation of the CK-PE channel
and the peak values of both the DNA-DAPI and CD45-APC channels were
measured on every object using locations and outlines revealed by the
thresholding procedure. Finally, classification of every object was performed
and the objects were counted as automated CTC (aCTC), where: (i) the
CK-PE standard deviation was >50 counts; (ii) it was sized between 75
and 2000 pixels (34–898 µm2); (iii) the DNA-DAPI peak value was >170
counts, and (iv) CD45-APC peak was <60 counts. The criterion for aCTC
size was raised from 500 to 2000 pixels to accommodate for the larger size
of CTC from breast-cancer patients compared to CTC from prostate-cancer
patients.

For every patient’s sample, the objects assigned as aCTC were totaled
to give a final aCTC count per patient. The image-analysis algorithm
does not use the FITC channel for aCTC recognition, and thus permitted
determination of Her-2-FITC expression on the outline covering the area
where the aCTC were present. The mean value, summed with two times
the standard deviation of the value of the Her-2-FITC channel within the
outline of each CTC, was measured to quantify Her-2 expression. Using this
combination of two measures, cells with an irregular or speckled staining
pattern, and a low mean value, could be included as positive Her-2 aCTC
because the standard deviations of their staining intensity would be high.
The coefficient of variation (CV) of Her-2 FITC fluorescence intensity was
defined as the standard deviation divided by the mean and was determined
for cell lines and patient samples that had equal or more than 5 aCTC.

8.2.5 determination of a threshold for automated her-2
assessment

To arrive at a threshold for Her-2-FITC staining within each sample, Her-2-
FITC staining of leukocytes present in the enriched sample was used as an
internal control. To identify leukocytes in the sample, thresholding of the
CD45-APC channel was performed to select the outline of the leukocytes.
A leukocyte classifier was created that included objects with a maximum
value, in CK-PE, of 100 counts, with a size range between 50 and 500
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Figure 8.1 : Scatter plot of measured aCTC versus manually scored mCTC in 103
samples of M1 patients (IC 2006-04 study). The dashed lines represent the clinical
threshold of ≥5 CTC.

pixels (22–224 µm2), a DNA-DAPI peak value of at least 100 counts, and a
CD45-APC peak value of at least 100 counts. The distribution of Her-2-
FITC signals in leukocytes within each sample was used to determine an
appropriate threshold percentile for Her-2-staining of aCTC.

8.3 Results

8.3.1 identification of ctc and leukocytes in m1
breast-cancer patients

Leukocytes and aCTC from 103 patients with M1 breast-cancer who had
at least one mCTC detected and the Her-2 CTC staining assessed were
identified in the stored images generated by the CellSearchTMsystem, before
the start of first-line chemotherapy. The number of leukocytes identified in
the 103 samples ranged from 38–12541, with a mean of 1298, a median of
371, and a SD of 2432. The number of aCTC identified by the algorithm
ranged from 0–10902, with a median of 8, a mean of 217, and a SD of 1178.
In comparison, manual reviews (performed using CellSearch instructions)
resulted in 1–14274 mCTC, with a median of 9, a mean of 232, and a SD
of 1443. Figure 8.1 shows the correlation between the number of aCTC
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versus the number of mCTC in the samples from the 103 patients. The
horizontal and vertical lines were drawn at the clinical cut-off numbers of
five aCTC and five mCTC, to create four quadrants. The R2 between aCTC
and mCTC counts was 0.978 (slope = 1.28, intercept = -44.85). The upper
left and lower right quadrants, in Figure 8.1, show that seven patients (7%)
had discordant results between manual and automated counts, according to
the clinically defined ≥5 CTC cut-off point. Note that samples with zero
mCTC where CTC could have been potentially detected by the automated
algorithm, were not part of this analysis.

8.3.2 her-2 expression breast-cancer cell lines

Cells from the six breast cancer cell lines SKBR3, BT474, MDA-MB361,
ZR75-1, MCF7, and BT20 were each spiked in blood samples from healthy
donors and processed with the CellSearch system using Her-2-FITC as an
additional reagent. Tumor cells were identified as aCTC in the stored images
generated by the CellSearch system. The median and 95th percentile of the
Her-2 signals in each of the cell lines are shown in Panel A of Figure 8.2. As
expected, the Her-2(3+) SKBR3 and BT474 cells showed the highest Her-2
levels, followed by the Her-2(2+) MDA-MB361 cells; Her-2 was expressed
lower in Her-2(0 or 1+) ZR75-1, MCF7, and BT20 cells.

8.3.3 her-2 staining of leukocytes as internal control

To arrive at a threshold for Her-2 expression in aCTC, the Her-2 expression
of leukocytes within each sample was investigated. Her-2 intensity, in the
areas where leukocytes were present, was determined for all patients. Figure
8.3 shows a histogram of the mean intensity, plus two times the standard
deviation of the Her-2 signal, for 6379 leukocytes detected in one sample.
The distribution of Her-2 signals in leukocytes suggests the presence of
two populations. The population with the lowest fluorescence can likely be
contributed to the autofluorescence of the lymphocytes carried over through
the enrichment procedure. The other population either non-specifically
bound to the Her-2 FITC antibody or exhibited a higher autofluorescence,
and can likely be contributed to granulocytes. We assumed that both
populations were quasi-normally distributed (by means of a Poisson-like
distribution), as illustrated by the solid and dashed black lines in figure 8.3.

It was determined that ∼9% of leukocytes had the higher fluorescence
signals. The Her-2-FITC threshold was set at 99.9% of the low intensity
leukocyte population (vertical dashed grey line in figure 8.3), which was the
91st percentile of the total distribution of leukocytes from each separate
sample. The R2 of this Gaussian fit of two distributions was 0.982. In cases
where the leukocyte count was low, this 91st percentile can have a confidence
interval that is excessively large. By means of a simulation in Matlab, it was
established that, in order to generate a 95% confidence interval from 0.82-1,
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Figure 8.3 : Histogram of Her-2-FITC signals from 6,379 leukocytes detected in a
patient sample. Two populations of leukocytes are shown: one with no fluorescence in the
FITC channel (solid black line) and the other with a low a-specific fluorescence (dashed
black line). The vertical dashed grey line indicates the 99.9% level of the leukocyte
population with no fluorescence.

around the 91st percentile, at least 75 leukocytes needed to be included in
each sample to define a robust internal Her-2-positivity threshold. Among
the 191 samples, only 2 samples were below the threshold of 75 leukocytes
and were inspected to assure the 91st percentile was set appropriately.

Median and 91st percentile of the Her-2-FITC intensity from the leuko-
cyte populations in the samples of each of the 90 M1 breast cancer patients
are displayed in panel B of figure 8.2. The median fluorescence intensity of
these internal controls shows a 4.0 fold variation and highlights the impor-
tance of an internal control for assessment of Her-2 expression. Comparison
of Her-2-FITC intensity of breast cancer cell lines showed that Her-2 signals
from Her-2(3+)SKBR3 and BT474 cells were clearly above the background
Her-2 staining of leukocytes; those from Her-2(2+) MDA-MB361 cells were
just above the background level in most samples, whereas those from the
Her-2(1+ or 0+) ZR75-1, MCF7, and BT20 cells could not be discriminated
from the background Her-2 staining of leukocytes.
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Figure 8.4 : Examples of CTC and the Her-2 expression of five CTC from five different
patients. The last three columns show intensity values for aCTC Her-2, the 91% expression
level of leukocytes within the same sample, and the final Her-2 status of the cell. The
scale bar applies to all images.

8.3.4 her-2 expression of ctc from m1 breast-cancer patients

At least one aCTC was identified in 90 of the 103 IC 2006-04 patients, and
Her-2 expression of aCTC in these patients is shown in panel B of figure
8.2. Her-2 expression of each aCTC is given on the left y-axis and the
percentage of Her-2-positive aCTC (i.e. aCTC expressing Her-2 above the
background staining of leukocytes) is on the right y-axis. Samples were
sorted, firstly on the percentage of positive Her-2 aCTC, and secondly on
the number of aCTC. The correlation between the number of Her-2-positive
CTC retrieved in each sample by automated and manual assessments was
good, with an R2 between automated and manual Her-2 assessment of 0.979
(slope = 1.78, intercept = -30.64).

Figure 8.4 shows examples of the cytokeratin, DAPI, CD45 and Her-2
images of five aCTC from different samples, together with the relative
fluorescence Her-2 intensity and the background Her-2 intensity of the leuko-
cytes in the samples. Interestingly, the heterogeneity of Her-2 expression,
reflected by the spread of Her-2 intensities among the different CTC re-
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trieved in a sample of the same patient, was higher for clinical samples than
for the spiked cell lines, as revealed by Her-2 FITC CV. Median CV for the
cell lines samples was 0.07 (range 0.06-0.08) against a median CV of 0.29 for
aCTC from patient samples (range 0.20-1.63). Leukocytes in these patient’s
samples had a median CV of 0.26 (range 0.15-2.29). When comparing
these distributions, p-values <0.001 were found between aCTC and cell
lines, and between leukocytes and cell lines (Mann-Whitney non-parametric
U-test). The spread of Her-2 signal between leukocytes and aCTC was not
significantly different (p=0.12).

8.3.5 primary tissue her-2 expression versus ctc her-2
expression in m1 patients

The primary tumor was Her-2 positive in 28 patients (27%), Her-2 negative
in 69 patients (67%), and Her-2 status was unknown in six patients (6%).
The Her-2 status of tissue from metastatic patients in whom aCTC were
detected, is indicated at the bottom of figure 8.2B. This figure strongly
suggests that a threshold of 75% of the aCTC expressing Her-2 above the
background staining of leukocytes may accurately identify the Her-2 status
of the primary tumor of the patients.

We further investigated whether the number of aCTC detected and/or
the primary tumor Her-2 staining had an impact on this Her-2 status
assessment. Figure 8.5 A and B show percentage of patients (y-axis),
separated into three groups according to the Her-2 staining of the primary
tumor versus the percentage (x-axis) of Her-2-positive aCTC. M1 patients
with a low aCTC count (i.e. 1–4 aCTC, panel A) were plotted apart from
those with high aCTC counts (≥5 aCTC, panel B). The figures show a
clear relation between the percentage of Her-2-positive aCTC and the Her-2
status of the primary tumor. For patients with known Her-2-negative (0,
1+, or 2+/FISH-) tumors, Her-2-positive rates of aCTC declined steadily
with increased percentage (threshold) of Her-2-positive aCTC.

Secondly, comparison between panel A and B shows that this observation
was most clear in the subgroup of patients that had ≥5 aCTC. This result
gives support to the concept that, when assessing the Her-2 status of
patients using CTC, the largest possible number of CTC should be analyzed.
Focusing on patients with ≥5 aCTC the threshold of >75% Her-2 positive
aCTC resulted in 29% (95%CI=[12%-55%]) of M1 patients with Her-2
positive primary tumor and ≥5 aCTC being Her-2 negative according to
their CTC. Inversely, 2% (95%CI=[0%-11%]) of M1 patients with Her-2
negative primary tumor and ≥ aCTC were Her-2 positive according to their
CTC.
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Figure 8.5 : Comparison of Her-2 expression in tissue and aCTC. Panel A and B show
comparisons for M1 patients with 1-4 and ≥5 aCTC, respectively (IC 2006-04 study).
Panel C and D show comparisons for M0 patients with 1-4 and ≥5 aCTC, respectively
(BEVERLY 01 and 02 studies pooled). The dotted line indicates the threshold for
patients with >75% Her-2-positive aCTC.

8.3.6 validation in m0 breast cancer patients

Biologically, it is expected that the discrepancy between the primary breast
tumor and CTC is lower with CTC retrieved at M0 stage (i.e. CTC
likely released by the primary tumor) than with CTC retrieved at M1
stage (CTC derived from metastatic masses made of highly selected tumor
cells). Therefore, we analyzed the images of the 88 M0 patients included
in BEVERLY 01 (Her-2-negative primary tumors) and 02 (Her-2-positive
primary tumors) studies. In this inflammatory non metastatic (T4dM0)
breast cancer population, 55% of patients had ≥1 and 15% ≥5 aCTC/7.5ml
detected before the start of neoadjuvant chemotherapy. Correlation between
mCTC and aCTC was good with a R2 of 0.979 (slope = 1.41, intercept =
-1.57).

Figure 8.6A and 8.6B show the aCTC count and the Her-2 fluorescence
intensity for each aCTC detected in patients from BEVERLY 01 and 02,
respectively: several patients in both studies seemed to have a discrepancy
of CTC and primary tumor Her-2 status. However, Figure 8.5C and 8.5D
shows that high discrepancy rates were observed only in patients with 1–4
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Figure 8.6 : Panel A shows a scatter plot of aCTC and median leukocyte Her-2-FITC
signal intensities, together with the percentage of aCTC that were above 91% of the
baseline leukocyte Her-2 expression levels for 23 M0 patients that had at least one
aCTC (pink line) and negative Her-2 tissue status. At the bottom of the figure, the
primary tumor-tissue status of each patient is plotted (bright pink = Her-2-positive (3+
or 2+/FISH+), other colors = Her-2-negative (0+, 1+ or 2+/FISH-)). Panel B shows 27
M0 patients that had at least one aCTC and positive Her-2 tissue status.

aCTC; no discrepancy between Her-2 status of the primary tumor and
their corresponding aCTC was seen in M0 patients with ≥5 aCTC, giving
support to the validity of our Her-2 assessment method.

8.3.7 processing time and reproducibility of the algorithm

The processing time required for automated identification and presentation
of the images for manual reviewing were similar. However, mCTC counts and
Her-2-intensity grading by a human operator typically took an additional 8
minutes per sample (median 5, range 1–39, SD 8 min). The variability of
counting aCTC using the algorithm was 0%.
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8.4 Discussion

Determining tumor Her-2 status in patients with breast cancer is needed
to provide tailored treatment. The ability to use CTC as a surrogate
for a tissue biopsy would enable personalized treatment for these cancer
patients. CTC are however not always detected in patients with metastatic
breast cancer, and when present, Her-2 expression is heterogeneous and its
determination is encumbered by inter- and intra-laboratory variations by
human reviewers. Feasibility of Her-2 assessment by FISH on CTC has been
reported [12, 13, 23], but it is much more expensive and labor intensive
than immunocytostaining. The difficulties a reviewer faces when judging if
a CTC is Her-2-positive by immunofluorescence include estimating Her-2
contrast, and determining whether or not it is above the staining intensity
of, for example, a Her-2-expressing cell line. Furthermore, the reviewer
has to judge whether or not there is variation in the intensity based on
differences in Her-2 staining or sensitivity of the microscope. The latter can
for example be influenced by the time the mercury arc lamp has been used.

Previous reports on Her-2 staining of CTC from breast-cancer patients
have mostly relied on visual estimates of the “global level” of Her-2-FITC
fluorescence from the “pool” of CTC detected in each patient [18]. Beyond
the technical issues listed above, this approach implicitly prevents any
further study on the clinical implications of Her-2 heterogeneity within
the pool of CTC regarding their responses to anti-Her-2 therapies. A H-
score-based approach has also been proposed to provide a weighted score,
based on the proportion of CTC with a given level of fluorescence [24]. The
H-score is routinely used to analyze the immunohistochemistry of tumor
tissues, but it is based on the assumption that a large number of cancer cells
(typically >102–103 cells) are assessed. This scoring system should therefore
be used with care for CTC analysis, as visual estimates of proportions may
be poor for most samples due to the low number of detected CTC.

A third method has been proposed, based on the signal/background-
ratio calculation using image-analysis software, which may offer an objective
estimate of Her-2 intensity for each CTC detected [17]. This method uses
the low-resolution “capture screen” function of the computer to manually
export each CTC picture from the CellSearch system to the image-analysis
software, and is not suitable for samples that contain a large number of
CTC. Moreover, this method is heavily impacted by the automatic scaling
of the image intensity done by the CellSearch system, especially if a bright
object is located near to the cell of interest.

Here, we have presented a new method to quantify Her-2 status of CTC
in images generated by the CellSearch system, using an automated algorithm
that was tested in a large cohort of patients. A computer program was used
to classify CTC in the recorded CellSearch images. This CTC classifier was
optimized using clinical outcome of images from prostate-cancer patients
[22]. The outline of the CTC was used to determine the mean and standard
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deviation of the Her-2-FITC signal for all CTC in every patient.

A good correlation was found between manual and automated CTC
counts (Figure 8.1). The variability of counting aCTC using the algorithm
was 0%, whereas a previous report by our group and others showed that
inter-reader variability ranged from 4–31% for mCTC counts (median 14%)
[16]. When evaluating Her-2-FITC staining, the variability of automated
evaluation was also 0%. Although this variability has not yet been sta-
tistically compared to human readers, the variability is likely significantly
higher for human readers. In our quantitative measurements of Her-2 on
aCTC within individual patients, we observed great heterogeneity in Her-2
intensity levels. Interestingly, the spread of Her-2-intensity (CV) was much
higher in patients than in cell lines, suggesting the presence of several
sub-clones with different Her-2 expression levels in the patients’ blood. Such
heterogeneity is know in primary tumor, but has not been measured in CTC
yet. It may play a role in treatment resistance, and is a further demon-
stration that cell lines do not recapitulate the heterogeneity of real cancer
cells. It also indicates that, in order to derive from these CTC data a global
Her-2 positive or Her-2 negative status, thresholds need to be set for both
Her-2-intensity level and the proportion of Her-2-positive CTC.

First, a quantitative Her-2 threshold was set for CTC in each sample,
based on Her-2 staining of the leukocytes carried over from the enrichment
procedure in each sample, which acted as an internal control. Figure 8.4
illustrates the importance of an internal control: if a fixed-intensity value is
set, then the CTC from row 4 could be counted as Her-2-negative because
of its low intensity value, whereas Her-2-intensity of the CTC is actually
well above the leukocyte threshold. In contrast, the CTC in row 5 could
have been judged as Her-2-positive, whereas its Her-2 intensity is below
that of the leukocytes in the sample. This threshold allowed determination
of Her(2+) and Her-2(3+) cell lines as Her-2-positive, but not Her-2(0+)
and Her-2(1+) cell lines.

Second, we set the percentage of Her-2-positive aCTC at >75% to
arrive at a minimal discrepancy between Her-2 status of the primary tumor
tissue and aCTC in the training cohort consisting of M1 breast cancer
patients, before the start of first line chemotherapy. Interestingly, the global
discrepancy rate decreased when taking into account patients with ≥5 aCTC
detected. To our opinion, this result is not sustained by any biological
phenomenon and directly suggests that Her-2 positivity percentage has to
be assessed in a significant number of CTC (here, no other threshold than
≥5 CTC was tested). We finally conclude, with our method, that CTC and
primary tumor have discordant Her-2 statuses in 29% (95%CI=[12%-55%])
of the M1 patients with ≥5 CTC count and Her-2 positive primary tumor
and only 2% (95%CI=[0%-11%]) of the patients with ≥5 CTC count and
Her-2 negative primary tumor.

Our aCTC Her-2 scoring method was then validated in M0 patients.
At M0 stage, any detected CTC should derive directly from the primary
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tumor: no major molecular discrepancy is expected between CTC and the
primary tumor; at least these discrepancies should be less frequent than
in M1 patients. In BEVERLY 01 and 02 studies, patients were considered
non-metastatic (M0) after an exhaustive radiological screening but had
inflammatory primary tumors (T4dNxM0), which correspond to rare but
aggressive breast cancers. Our results showed high Her-2 discrepancy rates
when all patients were analyzed, in the range of those reported in a previous
publication by German groups in the neoadjuvant GEPARQUATTRO trial
[18].

However, when looking at the M0 patients with ≥5 CTC count, we
observed no discrepancy between CTC and primary tumor Her-2 status,
in line with our previous hypothesis. This also suggests that discrepancy
reports in M0 patients may be flawed by the low number of CTC assessable
in this setting. These findings are in line with the seminal case-report
study by Meng et al [13], who showed that Her-2 status change are mostly
detectable in advanced M1 breast cancer patients and are possibly associated
with or driven by treatment resistance. However, the number of patients
with M0 disease and ≥5 CTC is limited (<15% even in case of T4d tumor).

Finally, this study, based on immunofluorescence analysis of a total
of 191 M1 and M0 patients, provides a quantitative, reproducible, and
fast method to determine Her-2 status of CTC. Our method eliminates
intra- and inter-reviewer, as well as inter-laboratory variations, and enables
standardization of Her-2 assessment in CTC. With the availability of such
a reliable tool, further interventional studies -e.g. DETECT III trial [25]-
need to be conducted to determine in M1 patients whether Her-2 status
changes in CTC are clinically relevant when deciding to add (or remove)
Her-2-targeted therapies, such as trastuzumab or lapatinib.
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Summary

Conclusions

The detection of circulating tumor cells (CTC) is a difficult task. CTC are
very heterogeneous in size, shape, antigen expression, and are present at
very low frequencies. Missing or misjudging a few events may have great
consequences, as the clinically used cut-off for determining favorable or
unfavorable prognosis for a patient is currently at three or five CTC in 7.5
ml of blood, depending on the cancer type. It is thus of utmost importance
that all objects that are a threat for a patient are counted in reliable way.
In this thesis, methods to quantify CTC and their features are presented.

In chapter 1, background is provided on cancer and the role of CTC
in this disease; the CellSearch system developed for enumeration of CTC
is explained. The CellSearch system was validated on a large number of
clinical studies and has proven its value. It is however unknown if other
definitions of CTC exist that are even more relevant for patient survival and
if these definitions can improve the detection of a rise or drop in the number
of CTC in patients over time. Therefore, there is great need for automated,
quantitative methods: to remove current variability in counting CTC, to
perform a fair comparison between measurements on different systems, and
to investigate quantitative biomarker levels.

In chapter 2, different methods of spectral imaging are compared by
simulation and a method of microscope calibration is shown which enables
fair comparison between systems by using a well-defined light source. We
show that a tailored method of spectral imaging, using dichroic mirrors that
are specific for a set of fluorochromes, performs the task of imaging an assay
of quantum dots a factor 15 faster than other spectral imaging methods.
When using a LED-board for microscope calibration, the differences between
real life setups are smaller: a factor 3 to 10, depending on the wavelength
used. It furthermore becomes apparent that different cameras, although
employing the same CCD chip, have very different characteristics. It is
thus very important to use such calibration tools in the future: no fair
comparison between measurements is otherwise possible.

In chapter 3, an algorithm is shown that counts fluorescent in situ
hybridization (FISH) probes in CTC. FISH probes label specific regions
on individual chromosomes, if a cell has more than two copies of a certain
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probe, its either aneuploid or amplified with a high probability of being
cancerous. We show that counting of chromosomes by humans using FISH
is hampered by intra- and inter-reviewer variations. When reviewing CTC,
variation between reviewers was measured as high as 33.2%, thus showing
the need for proper standardization of this technique. A probe-counting
algorithm was trained on leukocyte samples and tested on CTC samples.
We show comparable results between reviewers and the algorithm when
counting CTC. However, reproducibility of the algorithm is 100%, so when
the computer makes mistakes, at least they will be consistent.

In chapter 4, we modified the algorithms for finding chromosomal
aberrations to detect tumor particles and cells. Technical details of the
algorithm that detects objects in the images recorded by the CellSearch
system of the blood of prostate cancer patients are provided. To select
the most hazardous objects for patients, we selected objects by means of
certain parameters and measured their influence on survival of these patients.
Parameters of objects were ranked based on their ability to dichotomize
the patient group into favorable and unfavorable groups. Furthermore, the
algorithm was tuned such that the number of objects that were found in
the control group of healthy subjects were kept as low as possible. The
strongest definition of automated CTC required that objects had a high
standard deviation of the cytokeratin signal, a high maximum value of the
DNA signal, a low maximum value of the CD45 signal, and a size range
between 34 and 224 µm2. Stratifying patients based on these parameters
resulted in comparable Cox hazard ratios (HRs) as compared to the manual
selected cells by human reviewers. However, the computer algorithm is
much faster and has 0% variability. Of note, the optimal definition required
objects to contain DNA and not contain CD45, thereby showing that the
optimal definition dismisses small tumor particles.

In chapter 5 the CTC definition defined in chapter 4 was validated
on an independent data set from prostate cancer patients; our group was
blinded to the survival data of these patients. Again, our definition showed
equal prognostic value as compared to the manual CellSearch definition,
being the first automated algorithm to count CTC reliably. We furthermore
show that when the DNA requirement in the definition was left out, HRs
dropped by much. Leaving out the CD45 requirement did not influence the
HR much, but allowed for a lot of objects to be counted in healthy controls,
which is undesirable.

In chapter 6, we applied the automated counting algorithm on images
from samples of breast and colon cancer patients. Additionally, we verified if
size, nuclear-to-cytokeratin ratio, roundness, clusters and speckled CTC had
impact on survival of patient. Although correlation between counts using
the manual and automated count was low in some studies, prognostic value
was similar using both methods. We show that morphological parameters
of CTC differ between different cancer types. Multivariate analysis showed
furthermore that size and nuclear-to-cytokeratin ratio had significant impact
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on survival in breast cancer: small cells with small nuclei compared to their
cytokeratin signal are associated with unfavorable prognosis.

In chapter 7, we investigated the possibility of measuring an actual
drop in CTC count after administration of therapy. An actual drop indicates
that therapy has an effect. However, counts are usually low in patients
and thus the Poisson error becomes large. We applied different criteria
to measure a drop on patient data at multiple time points and show that
treatment should focus on getting the number of CTC to zero: a relative or
absolute reduction still may leave patients with CTC and has low impact on
survival. We furthermore show that a very strict CTC definition is the most
useful because of low background in healthy controls. Other definitions,
allowing for example tumor micro particles to be counted, did not improve
our ability to count a change in the number of CTC.

In our final chapter 8, we enabled the quantitative power of our new
CTC definition to measure an extra biomarker on CTC. We used the
CellSearch control channel to image cells with Her-2 conjugated antibodies
in samples of metastatic and non-metastatic breast cancer patients. We
show again good correlation between manual and automated count, and a
very large heterogeneity of Her-2 expression on CTC within patients. By
applying a 75% threshold of Her-2 positive CTC in patients with ≥5 CTC,
a relatively low discrepancy rate of 2% of metastatic patients with Her-2
negative primary tumors that had Her-2 positive CTC status was found;
29% of patients with Her-2 positive primary tumors had Her-2 negative
CTC status. Of note, no Her-2 discrepancy was found between CTC and
primary tumor in non-metastatic patients with ≥5 CTC, suggesting that
Her-2 status shift could appear at metastatic relapse or treatment resistance.

Outlook

The results shown in this thesis suggest that samples of other types of cancer
should be investigated with our automated algorithm, for example samples
from lung cancer patients. Samples from other patients may also benefit
from the lower variability and fast processing using our algorithm. However,
we also show that the low frequencies of CTC using the current system
pose a real challenge, which cannot be resolved by counting more objects in
the same sample. Larger blood volumes should be processed to circumvent
this issue, as our group already showed that every metastatic patient has
CTC in 5 liters of blood. Nevertheless, a wide range of extra biomarkers
may be tested using this algorithm next to Her-2, to determine quantitative
expression on CTC, such as IGF-1 or uPAR. Measuring expression of these
receptors on CTC may allow for a true quantitative liquid biopsy. Such a
biopsy, which is less tedious and hazardous to collect from patients than
a traditional biopsy, could improve cancer diagnostics. Hopefully, it can
bring cancer closer to the status of a chronic, controllable disease.
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Samenvatting

Conclusie

Het opsporen van circulerende tumor cellen (CTC) in het bloed van patiënten
met kanker is een zware opgave. CTC lopen zeer uiteen in grootte, vorm,
antigeen expressie en komen voor in zeer lage aantallen. Indien er een paar
CTC verkeerd beoordeeld of over het hoofd gezien worden, dan kan dit
grote gevolgen hebben, daar de huidige klinische grens voor een goede of
slechte prognose van een patiënt bij drie of vijf CTC in 7.5 ml bloed ligt,
afhankelijk van het type kanker. Het is daarom van zeer groot belang dat
alle objecten die een gevaar opleveren voor een patiënt betrouwbaar geteld
kunnen worden. In dit proefschrift worden daarom methoden behandeld
om metingen aan CTC te automatiseren en te kwantificeren.

In hoofdstuk 1 wordt achtergrond gegeven bij de ziekte kanker, de
rol van CTC in het ziektebeeld en het CellSearch systeem om CTC op te
sporen. Dit systeem is gevalideerd in een groot aantal klinische studies en
heeft zijn waarde bewezen. Echter, het is op dit moment onduidelijk of er
andere definities van CTC bestaan die nog meer impact kunnen hebben
op de levensverwachting van patiënten, en of deze definities beter kunnen
vaststellen of het aantal CTC in patiënten stijgt of daalt. Er is daarom grote
behoefte aan geautomatiseerde, kwantitatieve definities en methoden: om
de huidige variabiliteit in CTC karakterisatie te elimineren, om metingen
tussen systemen accuraat te kunnen vergelijken en om kwantitatief naar
biomarkers te kunnen kijken.

In hoofdstuk 2 worden verschillende methoden om spectrale beelden
op te nemen vergeleken door simulatie, en een methode wordt getoond om
systemen eerlijk te kunnen vergelijken met behulp van een goed gedefinieerde
lichtbron. We laten zien dat het spectraal opnemen van beelden met een
toegesneden methode -gebruikmakende van dichroische spiegels- resulteert
in een factor 15 snelheidswinst wanneer een assay van quantum dots gemeten
wordt. Wanneer een LED kalibratiebron wordt gebruikt in een echt systeem,
dan blijkt dit verschil kleiner: een factor 3 tot 10, afhankelijk van de
gebruikte golflengte. Tevens wordt duidelijk dat verschillende camera’s met
dezelfde CCD chip sterk afwijkende eigenschappen vertonen. Het is daarom
erg belangrijk om in de toekomst systemen te blijven kalibreren met een
degelijk instrument: anders zijn metingen moeilijk te vergelijken.
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Hoofdstuk 3 beschrijft een algoritme waarmee het mogelijk is fluores-
cente DNA probes in CTC te tellen. Met dergelijke probes kunnen specifieke
chromosoomgebieden gekleurd worden. Indien een cel meer dan 2 kopieën
heeft van een degelijk probe, dan is de cel aneuploid en hoogstwaarschijnlijk
een kankercel. We laten zien dat het tellen van deze probes door experts
geplaagd wordt door inter- en intra-expert variaties. Gemeten variaties
tussen experts liepen op tot 33.2%, waardoor duidelijk werd dat deze tech-
niek beter gestandaardiseerd moet worden. Een computer algoritme werd
getraind op beelden van leukocyten en getest op CTC. We laten zien dat
dit algoritme gelijkwaardige aantallen chromosomen telt vergeleken met
experts, het algoritme doet dit echter 100% reproduceerbaar. Als de PC
fouten maakt, dan doet hij dit in ieder geval altijd hetzelfde.

In hoofdstuk 4 hebben we het bovenstaande algoritme aangepast om
tumor deeltjes en CTC te detecteren. Technische details worden gegeven
over de detectie van objecten in het bloed van prostaatkanker patiënten zoals
afgebeeld door het CellSearch systeem. Om de gevaarlijkste objecten voor
patiënten te selecteren, werden parameters van deze objecten gecorreleerd
met de tijd dat patiënten overleefden. De parameters werden gerangschikt op
geschiktheid om de patiënten groep te scheiden op relatief goede en slechte
prognose. Verder werd het algoritme aangepast om zo weinig mogelijk
vals-positieve objecten te tellen in gezonde controle personen. De beste
CTC definitie liet slechts objecten toe met een hoge standaard deviatie van
het cytokeratine signaal, een hoge maximale waarde van het DNA signaal,
een lage maximale waarde van het CD45 signaal en een grootte tussen de 34
en 224 µm2. Het moet hierbij opgemerkt worden dat kleine tumor deeltjes
niet inbegrepen zijn in deze definitie, daar zij geen DNA bevatten. Het
scheiden van de patiënten groep met behulp van deze optimale definitie
resulteerde in vergelijkbare Cox hazard ratio’s (HR’s) zoals bepaald met de
huidige CellSearch definitie. Echter, de PC vervulde deze taak veel sneller
en zonder variabiliteit.

In hoofdstuk 5 hebben we het algoritme van hoofdstuk 4 extern geva-
lideerd op een onafhankelijk data set van prostaatkanker patiënten, zonder
dat we de overlevingsdata van de patiënten hadden. De door het algo-
ritme opgelegde definitie had wederom dezelfde prognostische waarde als de
CellSearch definitie; ons algoritme is hierdoor het eerste algoritme dat be-
trouwbaar en snel CTC kan tellen. We laten verder zien dat als we de DNA
parameter uit onze definitie negeren, dat dan de HR sterk daalt. Deze HR
werd niet sterk beïnvloed door de CD45 parameter, maar deze parameter
zorgt ervoor dat het aantal objecten in gezonde proefpersonen laag bleef.

In hoofdstuk 6 passen we het algoritme vervolgens toe op bloed sam-
ples van borst- en darmkanker patiënten. Verder onderzochten we of de
parameters grootte, kern-cytokeratine ratio, rondheid, aantal clusters en
aantal gespikkelde CTC van invloed was op de overleving van de patiënten.
De correlatie tussen de geautomatiseerde en CellSearch definitie bleek laag
in sommige studies, de prognostische waarde was echter vergelijkbaar bij
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beide methoden. We laten zien dat er morfologische verschillen bestaan
tussen CTC afkomstig van verschillende typen kanker. Met een multivaria-
bele analyse laten we verder zien dat grootte en kern-cytokeratine ratio van
CTC van significante invloed is op overleving van borstkanker patiënten.
Kleine cellen met een kleine kern in vergelijking tot hun cytokeratine signaal
geven een slechte prognose voor de patiënt.

In hoofdstuk 7 bestuderen we de mogelijkheid om een daling in het
aantal CTC van patiënten te meten na het starten van therapie: een daling
geeft aan dat de therapie werkt. Echter, het aantal CTC in patiënten is
vaak zo laag dat dit resulteert in een grote Poisson fout. Daarom passen we
verschillende criteria toe om een daling te meten op verschillende tijdspunten.
We tonen aan dat therapie moet focussen op het elimineren van alle CTC
in patiënten. Een relatieve of absolute daling waarbij nog steeds CTC
overblijven in de patiënt heeft weinig invloed op de overleving. Verder laten
we zien dat een strikte CTC definitie in de kliniek het nuttigst is, daar
deze weinig achtergrond objecten in gezonde proefpersonen telt. Andere
definities die bijvoorbeeld kleine tumor deeltjes in het bloed ook meetellen
verbeteren niet de mogelijkheid om een verandering in het aantal CTC
gedurende therapie te tellen.

Hoofdstuk 8 laat tenslotte de kwantitatieve kracht van ons nieuwe
algoritme zien door het meten van een extra biomarker in CTC. Gebruikma-
kende van het controle kanaal in het CellSearch systeem hebben we beelden
opgenomen van cellen gelabeld met antilichamen gekoppeld aan het Her-2
eiwit in samples van metastatische en niet-metastatische patiënten. De
correlatie tussen CellSearch en geautomatiseerde aantallen is sterk, we laten
verder zien dat er een grote variatie aan Her-2 expressie binnen patiënten is.
Door het toepassen van een criterium dat 75% van de CTC Her-2 positief
moet zijn in patiënten met ≥5 CTC laten we zien dat in 2% van de pati-
ënten met een Her-2 negatief primair tumor Her-2 positieve CTC status
gevonden wordt. In 29% van de patiënten met een Her-2 positief primair
tumor vinden we een negatieve Her-2 CTC status. Hierbij moet opgemerkt
worden dat we in niet-metastatische patiënten geen discrepantie tussen
primair tumor en CTC Her-2 status vonden. Deze resultaten suggereren
dat een verandering in Her-2 status in CTC op zou kunnen treden als de
patiënt een metastatische terugval heeft of doordat CTC resistent worden
voor de therapie.

Vooruitzichten

De resultaten in dit proefschrift suggereren dat samples van patiënten met
anderen typen kankers onderzocht moeten worden met behulp van ons
algoritme, zoals bijvoorbeeld longkanker samples. Deze patiënten zouden
ook kunnen profiteren van de lagere variabiliteit in getelde aantallen en een
sneller telproces. Echter laten we ook zien dat de lage aantallen CTC een
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grote uitdaging vormen, een uitdaging die niet aangegaan kan worden door
meer objecten te tellen in onze huidige samples. Onze onderzoeksgroep
heeft al aangetoond dat alle metastatische patiënten CTC in hun bloed
hebben: grotere bloedvolumes moeten daarom bekeken worden, willen we
deze CTC te pakken krijgen. Desalniettemin kan in de huidige samples met
ons algoritme kwantitatieve expressie van vele andere biomarkers onderzocht
worden. Het meten van dergelijke expressie kan uiteindelijk leiden tot een
heus vloeibaar biopt van een patiënt. Het verkrijgen van een vloeibaar
biopt is eenvoudiger en levert minder gevaar op voor de patiënt dan het
afnemen van huidige biopten. Het zou de kwaliteit van de diagnose van
kankerpatiënten aanzienlijk kunnen verbeteren. In de toekomst zou kanker
met behulp van de technieken uit dit proefschrift hopelijk dichterbij de
status van een chronische, controleerbare ziekte kunnen komen.
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